SOMC@PMS. Surface Organometallic Chemistry at Periodic Mesoporous Silica[†]

Reiner Anwander[‡]

Anorganisch-chemisches Institut, Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany

Received June 25, 2001. Revised Manuscript Received August 28, 2001

Periodic mesoporous silicas (PMSs) give enormous stimulus to the field of nanostructured organic-inorganic composite materials, opening new horizons for selective organic transformations and material science. This article outlines advanced synthetic concepts of their intraporous surface organometallic chemistry involving alkyl, (silyl)amide, and alkoxide reagents. Conclusive methods of characterization, elaborating the importance of spectroscopic probe ligands and nitrogen physisorption, reinforce the excellent capacity of PMS materials as a model support of, for example, amorphous silica. Particular emphasis is placed on tailormade hybrid materials, highlighting unexpected reaction behavior due to surface and pore confinement. Accordingly, surface silylation as an efficient method for designing the microenvironment is surveyed in detail.

1. Introduction

Surface organometallic chemistry (SOMC), that is, postsynthetic derivatization of chemically and thermally robust condensed solid materials with molecularly welldefined organometallic compounds,¹⁻⁴ has given enormous impetus to the field of organic-inorganic composite materials. Such "supramolecular chemistry" represents a unique approach to generate novel hybrid materials of relevance for catalysis and material science. Prominent examples include organozirconium and organochromium-modified silica/alumina materials shown in Figure 1. The Union Carbide catalyst derived from Cp₂Cr and silica (A)^{5,6} and silica-supported Ziegler-Natta systems such as $[(C_9H_7)_2C_2H_4]$ ZrCl₂/MAO (**B**, $MAO = methylalumoxane)^{7,8}$ display industrially applied catalysts for the synthesis of HDPE (high-density polyethylene) and stereoregular polypropylene, respectively. Zirconium hydride surface species (Figure 1, C) initially reported by Y. I. Yermakov et al.9 and J. Schwartz et al.¹⁰ were shown to mediate olefin hydrogenation, isomerization, and polymerization. J.-M. Basset et al., who coined the term SOMC,1e,11 further optimized the latter system and found novel, unexpected reaction pathways such as the depolymerization of polyolefins.12

Organometallic chemistry in confined spaces adds a new dimension to SOMC as verified by highly efficient nanovessel reactors and quantum-confined materials.^{3,4,13} Because of their intriguing structural and

Figure 1. Highly reactive surface species obtained via SOMC on silica.

chemical features, semicrystalline periodic mesoporous silicas (PMSs) of the M41S¹⁴ and SBA¹⁵ families are discussed as one of the most attractive host materials. Their intrinsic zeolite-like pore architecture with tunable pore sizes and narrow pore size distributions provides a unique platform for studying the grafting of highly reactive organometallic compounds. Surface areas as high as 1500 m² g⁻¹ and uniformly arranged mesopores (pore volumes as high as $3 \text{ cm}^3 \text{ g}^{-1}$) ensure both a higher guest loading and a more detailed characterization by means of nitrogen adsorption/ desorption, PXRD (powder X-ray diffraction), and HRTEM (high-resolution transmission electron spectroscopy) compared to conventional silica support materials.^{16,17} In 1994, T. Bein et al. initiated SOMC@PMS by grafting heterobimetallic complex Me₃SnMo(CO)₃(η-C₅H₅) onto dehydrated MCM-41 to produce highly dispersed Sn_xMo_y clusters by thermal degradation (Scheme 1).¹⁸ The anchoring via SiOSn linkages was proposed to limit the mobility of the molybdenum carbonyl fragment. Carbonyl species, particulary those

 $^{^\}dagger$ Dedicated to Professor R. Dieter Fischer on the occasion of his 65th birthday.

[†] Fax: +49 89 289 13473. E-mail: reiner.anwander@ch.tum.de.

Figure 2. Schematic presentation of parameters determining the local, the microenvironment, and the mesoenvironment of metal-grafted porous materials $(2r_p = \text{pore diameter } d_p; L^{(*)} = (\text{chiral}) \text{ ancillary ligand}; R^{(*)} = \text{surface-attached group; for } n = 1$, the podality of the metal center M corresponds to Π^3 ; OH = residual surface silanol groups, affecting, e.g., the hydrophobicity of the material).

Scheme 1. Thermal Degradation of Me₃SnMo(CO)₃(Cp)@MCM-41

of the more noble metals, often tend to agglomerate and migrate out of the intracrystalline space to the outer surface. $^{\rm 4b}$

Meanwhile, SOMC@PMS constitutes an integral part of organic-inorganic nanocomposite materials.¹⁷ This review will give a comprehensive survey of SOMC@PMS covering the literature until the beginning of 2001. The synthesis of organometallic-inorganic composite materials will be discussed in detail. Special emphasis is put on peculiar material properties originating from the grafting process and pore architecture, while paying less attention to more routinely discussed beneficial effects of heterogenized homogeneous catalysts¹⁹ such as ease of catalyst separation, recovery, and reuseability. Factors such as the podality Π^m of the grafted metal center, that is, the number of covalent M-O(support) bonds, the connectivity of the metal center, that is, the type of M–O–X(support) linkage, and the remaining (chiral) ligand environment L^(*) are important factors for governing the reactivity of the hybrid material (Figure 2). The micro- and mesoenvironment imposed by surfaceattached (chiral) groups $R^{(*)}$ and the pore diameter d_P are found to additionally tailor the reaction behavior. Group R^(*) decorated pore walls modify the reactivity of the active metal site not only via various steric effects including metal spacing and stereochemical void space formation but also via hydrophobicity effects.

The intracrystalline space of PMS materials imposes a stabilizing environment that can be fine-tuned by variation of the pore diameter. Pore confinement is supposed to imply a stabilizing effect by better protecting the reactive site from deactivation and leaching effects (encapsulation phenomenon).²⁰ Moreover, implications of pore confinement for structure–reactivity relationships can be anticipated. For microporous zeolitic materials, the parallels to natural metalloenzymes have been investigated for almost 20 years and have been compellingly presented by N. Herron in his article "Toward Si-based life: Zeolites as enzyme mimics".²¹ While ship-in-the-bottle synthesis is an attractive strategy for the synthesis of such zeozymes,²² SOMC appears to be a prolific method for the development of biomimetic catalysts based on mesoporous host materials ("mesozymes"). The application of SOMC@PMS to emulate the incredible cooperativity between metal site, protein tertiary structure, and substrate molecule in natural enzymes is certainly challenging.

2. PMS as a Support Material

Porous oxidic materials featuring rigidity, thermal stability, and regular, adjustable, nanosized cage and pore structures are commonly classified as promising support materials, particularly for applications in the fields of catalysis, adsorption, and material science.²³ The intrinsic structural and morphological properties of semicrystalline PMS materials have been summarized in several review articles.¹⁶ Although SOMC in the intracrystalline space of traditional microporous materials such as zeolites,^{3,24} zeotypes,²⁵ and pillared clays^{26,27} gives access to intriguing composite materials, this intrapore chemistry is restricted to smaller sized organometallic compounds. Even "small" compounds such as AlMe₃ (ca. 6.15 \times 3.60 Å)²⁸ and Fe(η^{5} -C₅Me₅)₂ (ca. 5.73×7.19 Å)²⁹ are prone to pore blockage.³⁰ Table 1 gives an idea of the intracrystalline space available in nanoporous, that is, microporous and mesoporous, support materials of relevance for SOMC.³¹⁻⁶⁴ For example, zeolite Y, which is routinely employed for intraporous organometallic chemistry involving ship-inthe-bottle-synthesis, $^{65-67}$ possesses super cages (d_p of \approx 13 Å), which are accessible by windows of 7.4 Å diameter only (Figure 3). Derivatization of extralarge microporous aluminophosphates via SOMC is hampered by their thermal instability (VPI-5)⁴¹ and unfavorable pore morphology (Cloverite).43,68

PMS materials are unique insofar that they combine favorable properties of crystalline microporous materials, for example, structural variety,69 with those of amorphous silica,⁷⁰ for example, high number of surface silanol groups. Because of their three-dimensional pore system and thermal stability, MCM-48, MCM-41, and SBA-15 silicas are discussed as the most promising candidates for SOMC. Uniform mesopores tunable in the range of 20-300 Å with narrow pore size distribution (Figure 3: BJH pore size distribution plot; fwhm = full width at half-maximum < 1 Å for pore sizes of pprox 30 Å, within the limits of this model for the desorption branch) ensure an efficient intrapore chemistry comprising complex grafting, surface-mediated ligand exchange, and catalytic applications. As a rule, SOMC is performed under anaerobic conditions on dehydrated support materials to avoid deactivation and hydrolysis and hence agglomerization of the molecular precursor, for example, by the formation of metal hydroxide species. Dehydration is commonly performed under vacuum at temperatures between 200 and 300 °C, yielding silanol populations in the range of 1.5-2.5 SiOH/nm². Various types of silanol groups including isolated, vicinal, geminal, and hydrogen-bridged moieties were assigned by FT IR spectroscopy.⁷¹ The surface coverage of the predominantly isolated silanol groups formed at elevated temperature not only depends on the

type	porous material ^a	largest pore ^b $(d_p/nm)^c$	super cage $(d_p/nm)^c$	ref(s)
microporous (large)	FAU (zeolite, cubic)	12 R (0.74 × 0.74)	1.2	31
1 01	EMT (zeolite, hexagonal)	$12 \text{ R} (0.65 \times 0.74)$	1.3 imes 1.4	32
	SAPO-37 (Si-AlPO ₄)	12 R (0.7×0.75)	1.3	33
	DAF-1 (Mg-AlPO ₄)	12 R (0.74 $ imes$ 0.76)	1.63	34
	USCB-8 (Mg-AlPO ₄)	12 R (0.75 $ imes$ 0.77)	2.0 imes2.0 imes1.5	35
	UTD-1 (zeolite)	14 R (0.75 $ imes$ 1.0)		36
	CIT-5 (zeolite)	14 R (0.99 $ imes$ 1.00)		37
	AlPO ₄ -8	14 R (0.79 – 0.87)		38, 39
microporous (extra large)	ULM-5 (GaPO ₄ /F)	$16~{ m R}~(0.83 imes 1.22)$		40
1 0 0	VPI-5 (AlPO ₄)	$18 \text{ R} (1.2 \times 1.3)$		41
	Cloverit (GaPO ₄)	20 R (0.60 $ imes$ 1.32)	3.0	42
	JDF-20 (AlPO ₄)	20 R (0.62 $ imes$ 1.45)		43
mesoporous (>30 R)	MCM-41	-(2.0-10.0)		14, 44
•	MCM-48	-(2.0-4.0)		45 - 49
	FSM-16	- (4.0)		50, 51
	KIT-1			52
	SBA-1	-(2.0-3.0)		53 - 55
	SBA-2	-(2.0-3.5)	ca. 4.0	53
	SBA-3	- (2.0-3.0)		53
	MSU-X	-(2.0-5.8)		56, 57
	SBA-15	- (5.0-30.0)		58
	SBA-8 (2D pore structure)	- (2.0)		59
	MCF-X (cellular foams)	- (<19)	24 - 86	60
	UOFMN-X/PMO/BSQMS	-(2.5-3.0)		61 - 63

Table 1. Classification of Porous Materials of Relevance for SOMC

^{*a*} DAF, Davy Faraday Laboratory; UCSB, University of California at Santa Barbara; UTD, University of Texas at Dallas; CIT-5, California Institute of Technology Number Five; VPI, Virginia Polytechnic Institute; ULM, University of LeMans; JDF, Jilin–Davy–Faraday; MCM, Mobil composition of matter; FSM, folded sheet mesoporous materials; KIT, Korean Institute of Technology; MSU, Michigan State University; SBA, Santa Barbara; MCF-X, mesostructured cellular foams; UOFMN, unified organically functionalized mesoporous networks; PMO, periodic mesoporous organosilicas; BSQMS, poly(bridged silsesquioxane) mesophase. ^{*b*} Cage window (n R = n-membered ring of nTO₄-tetrahedrons, d_p = pore diameter). ^{*c*} For microporous materials from X-ray structure analysis, for mesoporous materials according to the BJH pore size distribution plot; note that although the BJH method is generally applied to determine the pore size distribution of PMSs, theoretical and geometrical calculations showed that the effective pore diameter is underestimated by ca. 1.0 nm.⁶⁴

Figure 3. Pore size distribution of various porous materials and structural models of various PMS materials. Note that, in contrast to MCM-41, the hexagonally arranged mesopores of SBA-15 are interconnected by micropores.

pretreatment temperature but also on the synthesis procedure and type of PMS and pore diameter, that is, surface curvature. Like the commonly used amorphous silica and alumina supports,^{1,2} PMS materials are capable of surface reactions via these silanol groups and strained siloxane bridges formed during the calcination and dehydration process at elevated temperature.⁷² In particular, nitrogen physisorption measurements allow a unique picturing of the intraporous population, that is, of the steric bulk of the immobilized metal–ligand fragments, by representation of the surface area and the pore size distribution.⁷³ Hence, PMS materials seem also especially well-suited as *model* supports of the commonly used amorphous silica.⁷⁴

3. Synthetic Aspects of SOMC@PMS

SOMC represents a highly efficient method to postsynthetically incorporate surface metal centers and is often superior to framework substitution methods, that is, isomorphous substitution via hydrothermal Si/M coprecipitation, because of better accessibility of the active centers. SOMC produces predominantly surface centers the distribution of which is easily controllable over a wide range. In addition to SOMC@PMS of real organometallics, that is, of alkyl, cyclopentadienyl, and carbonyl derivatives, this article includes also reference to other highly reactive metal–organic compounds. Such *pseudo*-organometallics, containing no direct metal–

organometallic precursor	PMS	applications	ref
Al(O <i>i</i> Pr) ₃	MCM-41	hydrothermal stability	77
Al(O <i>i</i> Pr) ₃	MCM-41	MPV reduction of <i>tert</i> -butylcyclohexanone	78
Al(O <i>i</i> Pr) ₃	MCM-41	cumene cracking	79
$Nd(OCtBu_3)_3$	MCM-41	MPV reduction of <i>tert</i> -butylcyclohexanone	80
Ti(O <i>i</i> Pr) ₄	MCM-41	hydrothermal stability	77
Ti(O <i>i</i> Pr) ₄	MCM-48, SBA-15	dispersion of TiO ₂ surface species	81
$Ti(OEt)_4$	Al-MCM-41	oxidation of cyclohexene with H ₂ O ₂ or TBHP	82
Ti(OnBu)4, TiO(acac)2	MCM-41	anchoring of Žn(Pc)	83
Ti(OnBu)4	MCM-41	photocatalytic oxidation of phenol to CO2	84
$Zr(OnPr)_4$	MCM-48	peroxide activation	85
$Zr(OnPr)_4$	MCM-41	MTBE synthesis, <i>n</i> -pentane isomerization	86
$Zr(OiPr)_4$, Cp_2ZrCl_2	MCM-41	oxidation of cholesterol with TBHP	87
$VO(acac)_2$	MCM-48	VO_x surface species	88
$VO(acac)_2$	HOSiMe ₂ -MCM-48	VO_x surface species	89
VO(O <i>i</i> Pr) ₃	MCM-48	reactivity toward water; peroxide activation	90
$Cr(acac)_3$	AlMCM-41	ethylene polymerization	91
$Mo_2(OEt)_{10}$	MCM-48	peroxide activation	92
W(OEt) ₅	MCM-48	peroxide activation	92
Cu(TePh) ₆ (PPh ₂ Et) ₅	MCM-41	semiconducting nanowires	93

 Table 2. Alkoxide-Based SOMC@PMS^a

 $a = acetyl acetonate, pK_a (Hacac) = 9. MPV = Meerwein Ponndorf Verley. TBHP =$ *tert*-butylhydroperoxide. Pc = phthalocyanine. MTBE = methyl*tert*-butyl ether.

carbon linkage, feature otherwise readily hydrolyzable metal–X bonds as represented by amide and alkoxide ligands of enhanced basicity.⁷⁵ The basicity of the metal-bonded ligand, that is, the pK_a value of the protonated ligand, gives a reasonable measure of the reactivity of a metal–X(ligand) bond toward a dehydrated silica surface assuming a pK_a value of $\approx 5-7$ similar to silica gel (Scheme 2).⁷⁶

Tables 2-4 classify the diversity of SOMC@PMS according to the molecular precursor, the mesoporous support, and aspects of characterization and application. Metal alkoxide complexes (Table 2),^{77–93} particularly homoleptic derivatives M(OR)_x, have been widely used to postsynthetically modify silica surfaces. Depending on their substituents R, the pK_a value of alcohols HOR can range from 5 to 20. Mobil researchers initially employed metal alkoxide complexes of silicon, aluminum, and titanium as lining agents to improve the hydrothermal stability of MCM-41.77 In the following, alkoxide complexes derived from oxophilic metal centers were often used to tailor PMS materials for catalytic applications, particularly oxidation catalysis. Although being the most inexpensive precursor for SOMC, metal alkoxide complexes reveal several disadvantages, including incomplete surface silanol consumption (Scheme 2),^{80,85} release of strongly surface-coordinating alcohols, agglomerization of alkoxide surface species,⁹⁴ and limited secondary ligand exchange. It has been shown that

highly fluorinated alcohols such as HOC(CF₃)₃ (pK_a 5.7) readily "degraft" rare earth metal centers from a MCM-41 surface.⁹⁵ Calcination of the metal alkoxide grafted materials is a popular approach for the synthesis of metal oxo overlayers.^{80,90}

Table 3 lists SOMC@PMS based on molecular compounds containing a direct metal carbon bond.96-127 Metal alkyls MR_x of groups 11, 12, 13, and early transition metals belong to the most reactive organometallic compounds. They are quite expensive and their handling requires rigorous exclusion of air and moisture (Caution! These organometallics and the grafted derivatives are hazardous materials that react violently and often ignite instantaneously upon air exposure). Because of their enhanced reactivity, all of the reactive surface silanol sites are consumed and even strained siloxane bridges (Scheme 2) formed at elevated temperature are disrupted.^{96,97} Although this nucleophilic attack on the silicon atoms partially destroys the wall structure as shown for AlMe3 and MeMgI, it can increase the hydrophobicity and the hydrothermal stability of the support material.⁹⁷ For their application in oxidation catalysis, group 4 metallocene complexes were directly anchored onto the surface by halide ligand displacement in the presence of a base (vide infra).¹⁰⁶ Solvent-dependent protonation and detachment of the cyclopentadienyl and indenyl ancillary ligand has been observed for the reaction of complexes $[(C_5H_4)_2SiMe_2]$ -

Fable 3.	Alkyl-	and	Carbony	yl-Based	SOMC@PMS ^a
	./			/	

	•		
organometallic precursor	PMS	applications	ref(s)
MeMgI	BuO-MCM-41	hydrophobicity, hydrothermal stability	96
AlMe ₃	MCM-41	Lewis acidic support	97
AlMe ₃ /rac-[Me ₂ Si(2-Me-C ₉ H ₅) ₂]Y[N(SiHMe ₂) ₂]	MCM-41	olefin polymerization	98
MAO/Cp ₂ ZrMe ₂	MCM-41	MAO separation/ethylene polymerization	99
$MAO/[rac-C_2H_4(Ind)_2]ZrCl_2$	MCM-41	propylene polymerization	100, 101
$AlMe_3/[C_2H_4(Ind)_2]ZrMe_2$	MCM-41	propylene polymerization	102
GaMe ₃ /As(<i>tert</i> -Bu) ₃	MCM-41	III-V semiconductor	103
InMe ₃ /PH ₃	MCM-41	III-V semiconductor	104
$SnMe_4$, $SnEt_4$, $SnH(n-Bu)_3$	MCM-41	modification, reactivity	25
Me ₃ SnMn(CO) ₅	MCM-41	dispersed Sn _x Mo _v clusters	18
$Sn(n-Bu)_4//Cp_2TiCl_2$	MCM-41	oxidation of cyclohexene with TBHP	105
$Ge(n-Bu)_4//Cp_2TiCl_2$,	MCM-41	oxidation of cyclohexene with TBHP	105
GeEt ₃ Cl//Cp ₂ TiCl ₂			
Cp ₂ TiCl ₂	MCM-41	oxidation of cyclohexene with TBHP and H ₂ O ₂ (aq)	106
Cp ₂ TiCl ₂	MCM-48	peroxidative halogenation	107
Cp_2MCl_2 , M = Ti, Zr, V, Mo	MCM-48	oxidation of 2,6-DTBP with $H_2O_2(aq)$	108
$\{(c-C_{6}H_{11})_{7}Si_{7}O_{12}\}$ TiCp	(Al-)MCM-41	oxidation of cyclooctene with TBHP	109
$[(C_5H_4)_2SiMe_2]TiCl_2$	MCM-41/48	oxidation of cyclooctene with TBHP	110
Cp ₂ TiCl ₂ /MAO	MSF	ethylene polymerization	111
Cp ₂ ZrCl ₂ /MAO,	(Al-)MCM-41	ethylene polymerization	112
Cp* ₂ ZrCl ₂ /MAO	(Al-)MCM-41	ethylene polymerization	113
$[C_2H_4(Ind)_2]$ ZrCl ₂ /MAO			
Fe[(C ₅ H ₄) ₂ SiMe ₂]	MCM-41/48	magnetic materials	114 - 116
RuCp ₂	MCM-41	stereoselective hydrogenation	117
$Pd(Cp)(\eta^3-C_3H_5)$	Nb-MCM-41	Heck reaction	118
$Me_2Au(acac)$	MCM-41	oxidation of CO and H ₂	119
$Mn_2(CO)_{10}$	MCM-41	oxidation of propene to CO ₂	120
$Co_2(CO)_8$	MCM-41, SBA-15	Pauson-Kand reaction, thermal behavior	121, 122
$[Co_3Ru(CO)_{12}][NEt_4]$	MCM-41	magnetic nanoparticles	123
$[Ru_6C(CO)_{16}][N(PPh_3)_2]_2,$	MCM-41	alkene hydrogenation by Ru nanoparticles	124
$[H_2Ru_{10}(CO)_{25}][N(PPh_3)_2]_2$			
$[Ru_6Pd_6(CO)_{24}][NEt_4]_2$	MCM-41	alkene hydrogenation by RuPd nanoparticles	125
$[Ru_6C(CO)_{16}Cu_2Cl]$	MCM-41	alkene hydrogenation by RuCu nanoparticles	126
$[N(PPh_3)_2]_2$			
$[Ru_{10}Ag_{3}C_{2}(CO)_{28}Cl]$	MCM-41	alkene hydrogenation by RuAg nanoparticles	127
$[N(PPh_3)_2]_2$			

 a MAO = methylalumoxane. Cp = C₅H₅ = cyclopentadienyl. Ind = C₉H₆ = indenyl. Cp^{*} = C₅(CH₃)₅ = pentamethylcyclopentadienyl. MSF = mesoporous silica film. TBHP = *tert*-butylhydroperoxide. 2,6-DTBP = 2,6-di-*tert*-butylphenol. acac = acetyl acetonate.

Figure 4. Proposed surface species obtained via the reaction of *rac*-[Me₂Si(2-Me-C₉H₅)₂]Y[N(SiHMe₂)₂] with dehydrated MCM-41⁹⁸ and by direct grafting of Cp*₂ZrCl₂ onto dehydrated Al-MCM-41.¹¹³

TiCl₂¹¹⁰ and *rac*-[Me₂Si(2-Me-C₉H₅)₂]Y[N(SiHMe₂)₂]⁹⁸ (Figure 4/**A**) with dehydrated PMS, respectively. Heterogeneous single-site olefin polymerization catalysts were obtained via immobilizing the metallocene complex on MAO^{99–101} or trimethylaluminum-modified⁹⁸ PMS surfaces, a method which is meanwhile industrially applied on silica supports.⁷ The ethylene polymerization activities of zirconocene catalysts, for example, Cp*₂-ZrCl₂, directly supported on dehydrated Al–MCM-41 silica were higher than those of the same precatalysts immobilized on MAO-treated Al–MCM-41 silica (Figure 4/**B**).¹¹³ Significant leaching of alkylated species was found when *rac*-[Me₂Si(2-Me-C₉H₅)₂]Y[N(SiHMe₂)₂] was reacted with AlMe₃@MCM-41 (Scheme 3).⁹⁸

Metal carbonyl complexes react with the surface silanol groups at elevated temperature, for example, by sublimative anchoring or by decomposition of a refluxing Scheme 3. Proposed Surface Species Obtained via the Reaction of *rac*-[Me₂Si(2-Me-C₉H₅)]Y[N(SiHMe₂)₂] with AlMe₃@MCM-41

toluene solution.^{120–127} Continuous adsorption of Co₂-(CO)₈ onto MCM-41 from the gas-phase resulted in a maximum Co deposition of 20 wt %, corresponding to a monolayer with 2 Co/nm².^{122c} The CO sheath prevents agglomerization during solution impregnation, while the PMS silanol groups facilitate the uptake of the carbonyl complex by hydrogen bonding via the carbonyl group.¹²⁷ Upon thermal treatment (ca. 200 °C/10⁻⁴ Torr), surfacedispersed bimetallic carbonyl clusters such as [Ru₆C-(CO)₁₆Cu₂Cl][N(PPh₃)₂]₂ anchor via the more oxophilic metal.¹²⁶

Until recently, there has been a dearth of data on SOMC of metal alkyl amide derivatives $M(NR_2)_x$ (Table 4).^{94,128} Similar to metal alkoxides, their surface reaction generates strongly donating amines (Scheme 2) and

Table 4. Amide- and Silylamide-Based SOMC@PMS^a

PMS	applications	ref(s)
MCM-41	Diels–Alder cyclization (Scheme 14), MPV reduction of <i>tert</i> -butylcyclohexanone	74, 78
MCM-48	oxidation of cyclohexene with TBHP	130
Al-MCM-41		95
MCM-41	MPV reduction of <i>tert</i> -butylcyclohexanone, Nd oxide layer	80
MCM-41	MPV reduction of <i>tert</i> -butylcyclohexanone	
MCM-41	Diels-Alder cyclization (Scheme 14)	74
MCM-41	Diels-Alder cyclization (Scheme 14)	74, 131, 132
MCM-41	Diels-Alder cyclization (Scheme 14)	133
MCM-41/48	ketyl formation (Scheme 6)	134
	PMS MCM-41 MCM-48 Al-MCM-41 MCM-41 MCM-41 MCM-41 MCM-41 MCM-41 MCM-41/48	PMSapplicationsMCM-41Diels-Alder cyclization (Scheme 14), MPV reduction of tert-butylcyclohexanone oxidation of cyclohexene with TBHPAl-MCM-48oxidation of cyclohexene with TBHPAl-MCM-41MPV reduction of tert-butylcyclohexanone, Nd oxide layerMCM-41MPV reduction of tert-butylcyclohexanone MCM-41MCM-41Diels-Alder cyclization (Scheme 14)MCM-41Diels-Alder cyclization (Scheme 14)MCM-41/48ketyl formation (Scheme 6)

 a MPV = Meerwein Ponndorf Verley. TBHP = *tert*-butylhydroperoxide. H₂L = N, N-Bis-(3,5-di-*tert*-butylsalicylidene)ethylenediamine, *trans*-1,2-Bis(2,4,6-triisopropylbenzenesulfonamidato)cyclohexane.

Scheme 4. Various Options of the "Heterogenized Silylamide Route"

Approach B

siloxane cleavage reactions can be an issue.¹²⁹ Table 4 summarizes SOMC@PMS involving metal amide complexes.¹³⁰⁻¹³⁴ In contrast to their alkyl, dialkylamide, and alkoxide derivatives, silylamide complexes of oxophilic and electrophilic metal centers display a favorable surface reaction¹³⁵ featuring (i) mild reaction conditions, (ii) formation of thermodynamically stable metal siloxide bonds, (iii) the production of a unique hydrophobic platform due to concomitant surface silvlation, (iv) favorable atom economy, (v) suppression of extensive complex agglomerization due to the steric bulk of the silylamide ligands, (vi) release of weakly coordinating and hence easily separable silylamines, and (vii) the absence of any insoluble byproducts. Additionally, silylamide ligands provide a stabilizing environment (low coordination numbers, low metal oxidation states) for most of the main group and transition metals except for the noble metals.¹³⁶⁻¹³⁸ Various conceptional approaches of this heterogeneously performed silylamine elimination have been initially reported for the lanthanide elements as outlined in Scheme 4.

Approach A is based on a two-step reaction sequence, comprising an initial grafting of silylamide complexes¹³¹ and a subsequent surface-mediated secondary ligand exchange under fairly mild conditions.^{74,80} Depending on the type of silylamide ligand (steric bulk) and the oxidation state of the metal center (number of ligands) $\approx 1-2.5$ mmol of homoleptic silylamide complex can be grafted onto 1 g of dehydrated PMS material (surface area $\approx 1000 \text{ m}^2 \text{ g}^{-1}$). This corresponds to a relatively high surface coverage of 0.8–1.4 "Ln"/nm². For com-

parison, the multifunctional grafting of AlMe₃ gave a metal surface population of ≈ 2.7 Al/nm².⁹⁷ Approach B utilizes tailor-made heteroleptic molecular precursors exhibiting reactive docking positions (a silylamide moiety) and strongly chelating ancillary ligands such as SALEN and bissulfonamides, which disfavor protonolysis and counteract oligomerization reactions.¹³³ In addition to their favorable surface reaction silylamide ligands can be easily decorated with spectroscopic probe moieties as shown for the Si-H group of the dimethylsilylamide ligand N(SiHMe₂)₂. The IR spectra, representatively shown for the reaction of Y[N(SiHMe₂)₂]₃-(THF)₂ with dehydrated MCM-41 (Figure 5, **C**), feature the complete consumption of the strong band at 3695 cm^{-1} due to the isolated OH groups (A) as well as the characteristic SiH stretch vibration modes for metalbonded silvlamide ligands ($<2100 \text{ cm}^{-1}$, **B**) and for =SiOSiHMe₂ surface sites (2145 cm⁻¹, **E**). The asymmetric and symmetric stretching vibrations of the "YNSi₂" fragment are also visible at 900 and 796 cm^{-1.74} The IR spectrum of a material obtained under analogous conditions from a dehydrated nonporous Aerosil AS200 (**D**) reinforces the importance of a high surface containing material and hence high immobilized complex/ support ratios for an easy and quick characterization.

The profound importance of nitrogen physisorption for characterizing such intraporous SOMC is representatively shown for the grafting of $Sm[N(SiHMe_2)_2]_2(THF)_x$ onto dehydrated MCM-48 (Figure 6, **A** and **B**),¹³⁴ the subsequent reaction with fluorenone (Figure 6, **C**), and final acidic workup (Figure 6, **D**). The filling of the mesopores according to the approximate steric bulk of the immobilized species is impressively demonstrated and analysis of the Barret–Joyner–Halenda (BJH) pore size distribution suggests a regular distribution of the surface species accounting for reduced pore volumes and mean pore diameters. Note that use of pore-expanded PMS materials ensures the preservation of a mesoporous hybrid material after silylamide grafting, as indicated by the host-characteristic type-IV isotherm.⁷³

Alternative synthetic strategies yielding porous organometallic–inorganic hybrid materials comprise complex immobilization via tethered ligands,¹³⁹ ship-in-thebottle synthesis (physically entrapped complexes),¹⁴⁰ and self-immobilization through controlled thermolysis of labile organometallic complexes.^{114,115}

4. Effect of Surface Confinement

Agglomeration, dispersion, and coordination phenomena are well-known to govern the catalytic activity of

Figure 5. "Si–H" as a spectroscopic probe: The IR spectra (Nujol) of MCM-41_{dehydrat}. (**A**, pretreatment temperature 250 °C, 3 h, 10⁻³ Torr), Y[N(SiHMe₂)₂]₃(THF)₂ (**B**), [MCM-41]Y-[N(SiHMe₂)₂]_{*x*}(THF)_{*y*} (**C**, pretreatment temperature 100 °C, 3 h, 10⁻³ Torr), [AS200]Y[N(SiHMe₂)₂]_{*x*}(THF)_{*y*} (**D**, pretreatment temperature 100 °C, 3 h, 10⁻³ Torr), and [MCM-41]SiHMe₂ (**E**, pretreatment temperature 250 °C, 3 h, 10⁻³ Torr).⁷⁴

surface-deposited metal species.^{1,2} In contrast to impregnation methods utilizing metal salts such as nitrates ("incipient wetness approach"), the grafting of oxophilic and Lewis acidic main group and early transition metal centers via SOMC produces highly reactive surface species without thermal post-treatment. SOMC at ordinary silica and alumina materials revealed that such surface species can exhibit unforeseen reactivity pattern.¹² Such enhanced reactivity can originate from sterically unsaturated metal centers featuring a highly distorted coordination environment and from a strongly electron-withdrawing effect of the support. Moreover, surface confinement implies a "small-ligand" chemistry of the metal centers. Numerically, the surface confinement of a metal center can be explained by its podality Π^{m} , that is, the number of covalent M–O(support) bonds, and the angles O-M-O and M-O-X(support) (Figure 7). While Π^m and the M–O(support) distances can be theoretically determined by quantification of the released protonated ligand and X-ray absorption spectroscopy (EXAFS, extended X-ray absorption fine structure; XANES, X-ray absorption near-edge structure), respectively, the two sets of angles remain unknown. Π^{m} depends on the silanol population, which can be

Figure 6. Nitrogen adsorption/desorption isotherms at 77.4 K and the corresponding BJH pore size distributions of the parent and modified MCM-48 materials **A** ($-\blacksquare$ -; 10⁻³ Torr, 4 h, 280 °C; $V_p = 1.21 \text{ cm}^3 \text{g}^{-1}/d_p = 3.3 \text{ nm}$), **A'** ($-\blacklozenge$ -; **A** + excess of HN(SiHMe_2)_2; 10⁻³ Torr, 3 h, 250 °C; 0.77/2.7), **B** ($-\bigcirc$ -; **A** + {Sm[N(SiHMe_2)_2]_2(THF)_x}; 10⁻³ Torr, >5 h, r.t.; 0.30/1.9), **C** ($-\bigcirc$ -; **B** + fluorenone; 10⁻³ Torr, >5 h, r.t.), and **D** ($-\square$ -; recovered material; 10⁻³ Torr, 3 h, 250 °C; 0.65/3.0). $V_p = BJH$ desorption cumulative pore volume of pores between 1.5 and 6.5 nm in diameter. $d_p =$ pore diameter according to the maximum of the BJH pore size distribution ($d_p < 2.0$ nm have to be viewed critically).¹³⁴

Figure 7. Classification of surface bonding by podality. Angles α and β determine the extent of surface confinement.

controlled by thermal pretreatment, that is, dehydration, of the support material and its surface curvature. The intrinsic monodisperse pore structure of PMS materials facilitates the variation of the inner surface curvature, that is, the concavity of the pore walls, via the pore diameter. For example, formation of (\equiv Si-O)₂SnR₂ as the predominant surface species from the reaction of various alkyl tin complexes with MCM-41 was attributed to the enhanced inner surface curvature. In contrast, samples of microporous materials such as mordenite and cloverite, pretreated at the same temperature (200 °C), showed the formation of monopodal surface species.¹⁴¹

Grafting of Al(O*i*Pr)₃ onto MCM-41 in a nonaqueous environment according to Scheme 5, followed by calcination at 550 °C, produced a material (Si:Al = 5:1) that exhibited higher Brønsted acid content compared to Al– MCM-41 prepared by direct hydrothermal synthesis.⁷⁹ This was proven by a thermally programmed desorption of cyclohexylamine and by the catalytic cracking of cumene to benzene and propene.

Aluminum alkoxide-grafted MCM-41 also revealed a remarkably enhanced catalytic activity in the MPV reduction of cyclic ketones compared to the homogeneous system $Al(OiPr)_3$.⁷⁸ A detailed ²⁷Al MAS NMR study revealed that the enhanced catalytic activity can

Scheme 5. Formation of Lower-Agglomerated Al-Isopropoxide Species upon Grafting or Thermal Treatment

trinuclear "melt" form, contains 5-coordinate Al

be ascribed to the formation of low coordinated (4-, 5-), geometrically distorted aluminum species (Figure 8). It was proposed that surface confinement prevents the aluminum alkoxide moieties from agglomerization, while the silicate material simultaneously acts as an electronwithdrawing matrix. Note that the performance of MPV reductions depend on the Lewis acidity of the metal center and its ligand exchange ability.¹⁴² The ²⁷Al MAS NMR spectrum of an Al(OiPr)3-grafted material (Figure 8, B), which did not change upon the catalytic reaction (Figure 8, C), exhibits besides the sharp resonance at 0 ppm, which is dominant in the spectrum of commercially available Al(OiPr)3 (Figure 8, A), an intense broad signal pattern in the range of 75 to -25 ppm, clearly indicating the formation of additional aluminum sites. Interestingly, a previous kinetic study showed that the "melt" form of Al(OiPr)3 (Scheme 5), which consists of the predominantly trimeric form with 4- and 5-coordinated aluminum centers, was found to be 10³ times more reactive in MPV reductions than the tetrameric form containing 4- and 6-coordinated aluminum.¹⁴³ These findings could be corroborated by grafting 4-coordinate Al[N(SiHMe₂)₂]₃(THF) via the silylamide route, which produces lower coordinated aluminum surface species exclusively.78 Subsequent silylamide/HOiPr ligand exchange produced a material (Figure 8, D) that displayed similar catalytic activity.

A similar effect of surface confinement was detected for a special hetero-Diels–Alder reaction catalyzed by an Al-fod-grafted MCM-41 material (fod = 1,1,1,2,2,3,3heptafluoro-7,7-dimethyl-4,6-octanedione).⁷⁴ The favorable catalytic activity of the hybrid material obtained via the silylamide route and subsequent silylamide/Hfod ligand exchange was attributed to the formation of aluminum surface centers with accessible coordination sites for dienophile activation via adduct formation. Note that the 6-coordinate molecular complex Al(fod)₃ is almost inactive. Coordinative distortions have also been observed for the interaction of Cr(acac)₃ with a dehydrated MCM-41 sample. EPR spectroscopy indicated Cr(III) centers in a strongly distorted octahedral coordination.⁹¹

Surface confinement seems to be also implicated in the reductive behavior of samarium(II) centers. The rate and selectivity of these one-electron reduction reactions, usually induced by the standard reagent SmI_2 , are

Figure 8. ²⁷Al NMR spectra: (**A**) Al(OiPr)₃ as received from Aldrich; (**B**) Al(OiPr)₃@MCM-41; (**C**) material **B** recovered from the first MPV catalytic run; (**D**) Al[N(SiHMe₂)₂]₃(THF)@MCM-41; (**E**) material **B** exposed to air for several days (completely hydrolyzed). All hybrid materials were evacuated for 5 h at 25 °C/10⁻² Torr prior to measurement.⁷⁸

markedly affected by the type of solvents, additives such as strong Lewis bases, for example, HMPA, or metal salts,¹⁴⁴ and ancillary anionic ligands bonded to the Sm(II) center, for example, amide, alkoxide, or cyclopentadienyl ligands.¹⁴⁵ Sm(II) surface species obtained according to the heterogeneously performed silylamide route via reaction of bis(dimethylsilyl)amide $Sm[N(SiHMe_2)_2]_2(THF)_x$ with pore-expanded MCM-41 and MCM-48 (Scheme 6) form stable "storable" ketyl surface radicals and yield selectively the alcoholic product in the fluorenone/fluorenol transformation.¹³⁴ This contradicts the findings in homogeneous solutions where organosamarium(II) complexes treated with equimolar amounts of ketone hydrolyze to give the pinacol product exclusively.¹⁴⁵ The presence of sterically separated, surface-bound Sm(II) species seems to drastically modify the selectivity of this transformation. Further evidence for the formation of surface-confined and sterically unsaturated Sm(II) centers was obtained by FTIR spectroscopy: metal-bonded silylamide ligands featuring agostic Sm. SiH interactions were unequivocally indicated by a broad band of the SiH stretching vibration in the region from 2030 to 1920 cm⁻¹.¹³⁴

Scheme 7. Anchoring and Thermal Degradation of Cp₂TiCl₂ on MCM-41

EXAFS investigations revealed that grafting of Zr-(OnPr)4 onto MCM-48 in n-hexane produced more isolated metal species relative to the incipient wetness approach as evidenced by the lowest number of Zr-O-Zr connectivities.⁸⁵ This was also confirmed for Ti-(OiPr)4-grafted MCM-48 and SBA-15 materials by diffuse reflectance UV-visible, photoacoustic (PAS)-FTIR, and Raman spectroscopy.⁸¹ Hydrolysis of such Zralkoxide surface species and subsequent treatment with 0.5 M H₂SO₄ and calcination at 600 °C produced a superacidic catalyst for MTBE synthesis and *n*-pentane isomerization.⁸⁶ The 2.5-3 times enhanced activity of this heterogeneous catalyst compared to that of commercial SO_4^{2-}/ZrO_2 was attributed to the increased number of highly exposed and easily accessible active sites. Utilization of organometallic precursors with bulky ligands even enhanced the formation of isolated, catalytically active surface sites. This was shown for the anchoring of titanocene complex Cp₂TiCl₂ featuring bulky cyclopentadienyl ligands (Scheme 7).¹⁰⁶ Surprisingly, according to EXAFS studies, this titanocenegrafting produced tripodal (≡Si-O)₃TiCp as the predominant surface sites. This structural information has been rationalized and amplified by a density functional theory (DFT) calculation.¹⁴⁶ The fact that the experimentally obtained short Ti-C(Cp) distances could not be reproduced by theory was attributed to the EXAFS measurements being representative of a species formed under kinetic control, that is, strained surface species due to geometry constraints and due to a high electronegativity of the surface. In the same study,¹⁰⁶ TiCl₄

Scheme 8. Anchoring and Reductive Thermal Degradation of $Pd(Cp)(\eta^3-C_3H_5)$ on Nb–MCM-41

or Ti(O_i Pr)₄ precursor compounds were shown to exhibit a marked tendency for oligomeric titania-oxo species during the grafting sequence. The heterogeneous titanium hydroxy catalyst obtained according to Scheme 7 showed the highest turnover frequency for the catalytic epoxidation of alkenes (cyclohexene, pinene) with organic hydroperoxides catalyzed by Ti-containing mesoporous materials, for example, TOF = 37.3, for cyclohexene conversion with MPHP = 2-methyl-1-phenyl-2propyl-hydroperoxide.¹⁰⁶ Again, Ti-grafted MCM-41 displayed a higher activity than framework Ti-substituted MCM-41.

Ti-grafting experiments on dehydrated MCM-48 samples revealed that the ratio of monopodally and bipodally anchored species can be controlled by variation of the metal-organic precursor and by the distribution of surface silanol groups via the pore radii of the PMS samples.¹³⁰ It was found that Ti(NMe₂)₄ grafting of MCM-48 materials with pore diameters of 2.2, 2.6, and 3.4 nm (BJH pore size distribution, desorption branch) gave \approx 20%, 30%, and 40% of bipodally anchored titanium, respectively. On the other hand, Ti(O*i*Pr)₄ grafting of the pore-expanded MCM-48 material afforded \approx 60% of bipodal titanium species.

The excellent catalytic activity of a palladium-grafted MCM-41 material in the Heck carbon-carbon coupling reaction was ascribed to ultrahigh surface areas and highly dispersed catalyst species.¹¹⁸ The heterogeneous catalyst was obtained by sublimation of $Pd(Cp)(\eta^3-C_3H_5)$ through dehydrated Nb-MCM-41 under reduced pressure and subsequent reduction in hydrogen (Scheme 8). In comparison to impregnation methods, such vapor grafting afforded a markedly higher dispersion of metal centers, counteracting extensive cluster formation. Palladium metal surface areas and metal dispersions were determined by CO chemisorption as 140 m² g^{-1/32%} [vapor-grafted Pd(Cp)(η^3 -C₃H₅)], 78 m² g⁻¹/17% [Pd(Cp)- $(\eta^3 - C_3 H_5)$ -impregnated], and 40 m² g⁻¹/9% [PdCl₂impregnated]. The catalytic activity of these materials was investigated using activated and nonactivated aryl halides and styrene and *n*-butylacrylate as the vinylic substrate. For example, full conversion and a yield of 99% was obtained after only 1 h for the reaction of 4-bromoacetophenone *n*-butylacrylate (in air, 0.02 mol % catalyst, 120 °C, TON 5000). Surprisingly, the vaporgrafted material yielded a high conversion of nonactivated aryl substrates (67% for bromobenzene with n-butylacrylate: in air, 48 h, 0.1 mol % catalyst, 170 °C, TON 624), while the impregnated palladium materials gave only negligible conversion.

The presence of highly dispersed MnO_x species, obtained by vapor grafting of Mn₂(CO)₁₀ onto MCM-41 and subsequent calcination in air at 300 °C, was ascribed to superior catalytic activity in the total oxidation of propene (maximum at \approx 290 °C).¹²⁰ The onset temperature was \approx 100 °C higher for a Mn₂(CO)₁₀-deposited ordinary silica material.

Table 5. Chlorosilane-Derived Surface Silylation^a

Reviews

Table J. Child Ushane-Derived Surface Shylation						
chlorosilane	PMS	characterization, application	ref			
ClSiMe ₃	FSM-16	template extraction	156			
ClSiMe ₃	MCM-41	surface morphology	14			
ClSiMe ₃ , ClSiPh ₃	MCM-41	FTIR (different SiOH groups)	157			
ClSiMe ₃	MCM-41	pyridine, H_2O , and benzene adsorption,	158			
		FTIR, ²⁹ Si CP/MAS NMR				
ClSiMe ₃ , Me ₃ SiOSiMe ₃	MCM-41/48	stability (moisture, compression)	159			
ClSiMe ₃ , ClSiMe ₂ (<i>n</i> -Bu),	MCM-41	surface morphology, N ₂ adsorption	160			
$ClSiMe_2(n-Oct)$						
Cl ₃ SiMe (SiCl ₄)	MCM-41	<i>n</i> -hexane diffusion, hydrophobicity	161			
ClSiEt ₃ , ClSiPr ₃ , ClSiBu ₃	FSM-16	N ₂ adsorption, ¹³ C CP/MAS NMR, ²⁹ Si CP/MAS NMR	162			
ClSiMe ₃ , ClSiMe ₂ (<i>n</i> -Oct)	MCM-41	template extraction	163			
ClSiMe ₂ (Vin)	MCM-41	functionalization, $+ Br_2$	164			
Cl ₂ SiMe ₂ /H ₂ O	MCM-48	dispersion of VO(acac) ₂	89			
Cl ₂ SiPh ₂ , (MeO) ₃ Si(CH ₂) ₃ NH ₂	MCM-41	$+ \hat{H}BF_4 + [Ru_6C(CO)_{14}C(\eta^6-C_6H_4C_{10}H_{20}O_6)],$	165			
		molecular recognition				
Cl ₂ SiPh ₂ , (MeO) ₃ Si(CH ₂) ₃ NH ₂	MCM-41	+ HBF ₄ + KRuO ₄ ; alcohol oxidation with O ₂	166			
Cl ₃ Si(CH ₂) ₃ Br	MCM-41	+ "Fe*" + PdCl ₂ , allylic amination	167			

^a acac = acetyl acetonate. "Fe*" = (S)-1-[(R)-1',2-bis(diphenylphosphino)ferrocenyl]ethyl-N,N-dimethylethylenediamine (see Figure 11).

5. Effect of Local Environment, Microenvironment, and Mesoenvironment

Variation of the inner coordination sphere of the active metal site, that is, change of the local environment, is crucial for the design of homogeneous single-site catalysts¹⁴⁷ and, consequently, is examined for the development of more efficient and specialized catalysts of the category discussed in this article. Reports accumulate, revealing that the micro- and mesoenvironment implied by PMS materials can have important implications for both catalytic processes ("nanovessels" and "inclusion polymerization")¹⁴⁸ and material science ("quantum confined materials").^{4,149} Particularly, surface morphology, surface polarity, and pore confinement are important factors for defining the micro- and mesoenvironment in PMS materials.

5.1. Surface Silylation. Silylation and alkylation reactions are of fundamental importance for the examination of the surface morphology and for the manipulation of siliceous support materials including zeolites.^{150,151} Fine-tuning the catalytically active interface via adjustment of both the dispersion and accessibility of the catalytically active sites by steric and hydrophobicity effects is known to be crucial.¹⁵² Silylating reagents such as chlorosilanes, alkoxysilanes, and silylamines have found widespread application in postsilylation experiments and their reaction with surface silanol functionalities has been reported in detail (Scheme 9).⁷⁰

As a rule, chlorosilanes, $SiCl_xR_{(4-x)}$ (Scheme 9, (1)), and alkoxysilanes, Si(OR)_x $R_{(4-x)}$ (Scheme 9, (2)), require more drastic reaction conditions, that is, the reaction takes place at elevated temperature and in the presence of catalytic (e.g., H₂O) or stoichiometric amounts of additives (e.g., pyridine). In addition, these silylating reagents often display multifunctional surface reactions producing (undesired) byproducts such as alcohols and alkylammonium halides, which are difficult to separate. In contrast, silazane-based silvlation reactions and SOMC seem to optimally complement each other. Silazane silvlations are characterized by (i) mild reaction conditions, (ii) a relatively slow surface reaction, (iii) a monofunctional surface reaction, (iv) favorable atom economy, and (v) ease of thermal desorption of the excess silylamine released and the byproduct ammonia

Scheme 9

≡SiOH + CI-SiR ₃ base =SiO-SiR ₃ + HCI base	(1)
≡SiOH + RO-SiR ₃	(2)
$2 = SiOH + HN \begin{pmatrix} SiR_3 \\ SiR_3 \end{pmatrix} \xrightarrow{r.t.} 2 = SiO-SiR_3 + NH_3$	(3)
$2 = \text{SiOH} + \text{CF}_{3}\text{C}_{\text{NSiMe}_{3}}^{\text{OSiMe}_{3}} 2 = \text{SiO-SiR}_{3} + \text{CF}_{3}\text{C}_{\text{O}}^{\text{NH}_{3}}$	1 ₂ (4)
2 ≡SiOH + H ₃ Si-SiH ₃ <u>100 °C</u> 2 ≡SiO-SiH ₃ + H ₂	(5)

(Scheme 9, (3)).^{153–155} Additionally, a rich pool of silylamine reagents is commercially available and new derivatives are readily synthesized.

Although hexamethyldisilazane, HN(SiMe₃)₂, has been extensively studied as a silylating reagent of amorphous silica materials,⁷⁰ the initial silylation experiments on PMS materials focused on the application of chlorosilanes. Great efforts were made to physicochemically characterize the surface morphology of the mesoporous support materials (Table 5).^{156–167} Analogous to previous investigations of amorphous silica materials, alkoxysilanes have been employed to tailor the PMS surface for applications in chromatography, adsorptive separation, and catalysis (Table 6).^{168–191} Particularly, tethering of chiral homogeneous catalysts at the inner walls of PMS seems to be a popular approach to enter enantioselective catalysis.

Га	ble	6.	Surface	Functionalizat	tion via	Alkoxysilanes ^a
----	-----	----	---------	----------------	----------	----------------------------

		÷	
alkoxysilane	PMS	application	ref(s)
(EtO) ₃ Si(<i>n</i> -Oct), (EtO) ₃ Si(CH ₂) ₃ NH ₂	MCM-41	N_2 adsorption	160
$(MeO)_3SiR (R = n-Pr, n-Dec, Ph)$	MCM-41	bifunctionalization	168
Si(OEt) ₄	MCM-41	pore size engineering	169
(MeO) ₃ Si(CH ₂) ₃ SH	MCM-41	capillary gas chromatography	170
(EtO) ₃ Si(CH ₂) ₃ NH ₂	MCM-41/48	+ succinic acid + (R)-NEA; chiral HPLC	171
$(EtO)_3Si(CH_2)_xCH_3 (x = 7, 11)$	MCM-41	adsorption of nonyl phenol	172
(MeO) ₃ Si(CH ₂) ₃ SH	MCM-41	adsorptive separation (Hg)	173
(MeO) ₃ Si(CH ₂) ₃ SH	HMS	adsorptive separation (Hg)	174
(MeO) ₃ Si(CH ₂) ₃ R'	MCM-41	+ Cu(II); CrO_4^{2-} , As O_4^{3-} binding	175
(RO) ₃ Si-X-Si(OR) ₄	HMS	integral organic or organometallic	61-63
$R = Me$, Et; $X = C_2$, CHCH,		functionality (cf. Table 1)	
C ₂ H ₄ , 1,4-C ₆ H ₄ , 2,5-SC ₄ H ₂ ,			
2,2'-S ₂ C ₈ H ₄ , 1,1'-Fe(C ₅ H ₅) ₂			
(MeO) ₃ Si(CH ₂) ₃ Cl	MCM-41	+ TBD; transesterfication	176
(MeO) ₃ SiR	MCM-41	+ TBD; Michael addition	177
$R = (CH_2)_3OCH_2CH(O)CH_2$			
(MeO) ₃ Si(CH ₂) ₃ SH	MCM-41	+ H ₂ O ₂ ; esterfication	178
(MeO) ₃ Si(CH ₂) ₃ NH ₂	MCM-41	+ HBF ₄ ; local derivatization	165
(MeO) ₃ Si(CH ₂) ₃ NMe ₃ Cl	MCM-41	+ NMe ₃ OH; Knoevenagel and aldol	179
		condensation, Michael addition	
(MeO) ₃ Si(CH ₂) ₃ Cl	MCM-41	+ (-)/(+)-ephedrine;	180
		addition of ZnEt ₂ to benzaldehyde	
(MeO) ₃ Si(CH ₂) ₃ NH ₂	MCM-41	+ Cr(III)-SALEN'; epoxidation	181
(MeO) ₃ SiR	MCM-41	+ TACN + MnSO ₄ ; epoxidation	182
$\mathbf{R} = (\mathbf{CH}_2)_3 \mathbf{OCH}_2 \mathbf{CH}(\mathbf{O}) \mathbf{CH}_2$			
(MeO) ₃ Si(CH ₂) ₃ Cl	MCM-41	$+ t$ -SALPRN $+ Mn(acac)_2$	183
(MeO) ₃ Si(CH ₂) ₃ Cl	MCM-41	+ 2R,3R-cyclohexane-1,4,7,10-tetra-	184
		azacyclodecane + propylene oxide +	
		MnCl ₂ ; epoxidation	
$(MeO)_3Si(CH_2)_3R'$	MCM-41	+ salicylaldehyde $+$ Mn(OAc) ₂ ·4H ₂ O;	185
		epoxidation	
(EtO) ₃ Si(CH ₂) ₃ PPh ₂	MCM-41	$+ Rh(PPh_3)_3Cl; hydrogenation$	186
$(EtO)_3Si(CH_2)_3NH_2$	MCM-41	+ Ru(Por)(CO)(EtOH); oxidation	187
(MeO) ₃ Si(CH ₂) ₃ R"	MCM-41	+ CoCl ₂ ; electrochemistry, $+$ O ₂	188
$(EtO)_3Si(CH_2)_3NH_2$	MCM-41	$+ Cl_2Pd(CNCH_2Ph)_2$; hydrogenation	189
(MeO) ₃ Si(CH ₂) ₃ NMeR ^{'''}	MCM-41	+ PdCl ₂ ; hydrogenation	190
$[Cu(apts)_x(Solv)_{6-x}]^{2+}$	MCM-41	imprint coatings	191
[Cu(appts) ₂ (Solv) ₂] ²⁺			
x = 3,5; Solv = H ₂ O, MeOH			

^{*a*} R' = NH(CH₂)₂NH₂. TBD = 1,5,7-triazabicyclo[4.4.0]dec-5-ene. Por = *meso*-tetrakis(4-chlorophenyl)porphyrine. TACN = 1,4,7-triazacyclononane. (*R*)-NEA = (*R*)-naphthylethylamine. R'' = NH(CH₂)₂NH₂, NH(CH₂)₂NH₂, N(CH₂CO₂Na)(CH₂)₂N(CH₂CO₂Na)₂. apts = (MeO)₃Si(CH₂)₃NH₂. appts = (MeO)₃Si(CH₂)₃NH(CH₂)₂NH₂. R''' = (*S*)-1-[(*R*)-1',2-bis(diphenylphosphino)ferrocenyl]ethyl-(see Figure 11). HMS, hexagonal mesoporous silica.

More recently, the various options of disilazane silylation have been reported in detail (Scheme 9).¹⁹² Nitrogen physisorption and MAS NMR spectroscopy were applied to characterize the peculiarities of disilazane reactions including the effect of pore size engineering and the organic structure of the immobilized silyl groups. At ambient temperature, the silvlation efficiency of disilazane compounds, HN(SiR1R22)2, markedly depends on the size of the silyl group R¹ and R², respectively. For example, only 80% of the surface silanol groups of a MCM-41 sample, dehydrated at 280 °C/10⁻³ Torr, could be silvlated by means of the standard silvlation reagent HN(SiMe₃)₂ compared to the more efficient tetramethyldisilazane, HN(SiHMe₂)₂. The sterically even bulkier HN(SiMePh₂)₂ reacted with $\approx 40\%$ of the silanol groups under the same conditions. This corresponds to a surface coverage of 1.5, 1.85, and 0.75 SiR₃/nm², respectively. Both *consecutive* and *competitive* silvlation reactions revealed important details of the kinetics of this silvlation reaction and support a controlled surface functionalization as shown for vinyl moieties (Scheme 10). These vinyl groups provide a unique platform for subsequent modification reactions as verified by the hydroboration reaction.

N,*O*-Bis(trimethylsilyl)trifluoro acetamide, [CF₃CO-SiMe₃]=NSiMe₃, was described as a more efficient

silylating reagent than trimethylsilyl chloride, ClSiMe₃, and hexamethyldisilazane, HN(SiMe₃)₂ (Scheme 9/(4)).¹⁹³ Treatment of as-synthesized hexagonal PMS materials with disilane, Si₂H₆, at 100 °C prior to template re-

Table 7. Surface Functionalization via One-Pot Hydrothermal Synthesis with Alkoxysilanes (Co-condensation Method)^a

alkoxysilanes	PMS	characterization, application	ref(s)
Si(OEt) ₄ , (EtO) ₃ Si(<i>n</i> -Oct), (EtO) ₂ Si(Ph)	HMS	N ₂ adsorption, TEM, ¹³ C/ ²⁹ Si CP/MAS NMR_FTIR	196
Si(OFt) ₄ (FtO) ₂ Si(CH ₂) ₂ NH ₂		N ₂ adsorption TG DTA FTIR	197
$(EtO)_{2}Si(CH_{2})_{2}CN$			107
Si(OEt)4	MCM-41	TEM.	198
$(RO)_3SiR'(R = Me, Et)$		$^{13}C/^{29}Si CP/MAS NMR.$	100
$[\mathbf{R}' = all \mathbf{v}]$. Ph		bifunctionalization	
$(CH_2)_3NH_2$, $(CH_2)_3SH_2$		bir direction and defense	
$(CH_2)_3OCH_2CH(O)CH_2$			
(CH ₂) ₂ ONCHNCH ₂ CH ₂			
$(CH_2)_3OCH_2CH(O)CH_2$			
$Si(OEt)_4$. (EtO) ₃ SiPh	MCM-48	TEM. ¹³ C CP/MAS NMR	199
(EtO) ₂ SiMe. (EtO) ₃ Si(Vin)	MCM-41	¹³ C/ ²⁹ Si CP/MAS NMR: stabilization	200
$Si(OEt)_4$. (EtO) ₃ SiR	SBA-3	¹³ C/ ²⁹ Si CP/MAS NMR, XRD,	201
$(\mathbf{R} = \mathbf{Me}, \mathbf{Et}, n$ -Oct. Vin. Ph)		N ₂ adsorption	
$Si(OEt)_4$, (MeO) ₃ Si(CH ₂) ₃ NH ₂	MCM-41	N_2 adsorption:	202
		Knoevenagel condensation	
(MeO) ₃ Si(CH ₂) ₃ SH	HMS	adsorptive separation (Hg)	203
Si(OEt) ₄ , (EtO) ₃ Si(Vin)	MCM-41	XRD. TEM. N ₂ adsorption: $+$ Br ₂	163. 204
Si(OEt) ₄ , Si(OMe) ₄ ,	MCM-41	TEM, ¹³ C CP/MAS NMR, XRD,	205
(EtO) ₃ Si(CH ₂) ₃ SH		TEM, N ₂ adsorption; $+$ HNO ₃	
Si(OEt) ₄ ,	MSU-X	SEM, ²⁹ Si CP/MAS NMR, XRD,	206
(MeO) ₃ Si(CH ₂) ₃ SH		N ₂ adsorption	
Si(OEt) ₄ , (MeO) ₃ Si(CH ₂) ₃ SH	MCM, HMS	$+H_2O_2$, esterfication	177
Si(OEt) ₄ , (MeO) ₃ Si(CH ₂) ₃ R	MCM-41	XRD, TEM, ²⁹ Si CP/MAS NMR,	207
$[R = 2, 4 - (NO_2)_2 C_6 H_2 N H_2]$		UV; yellow mesoporous films	
(EtO) ₃ Si(CH ₂) ₂ (CF ₂) ₅ CF ₃	HMS	hydrophobicity, low-k dielectrics	208
(MeO) ₃ SiR	HMS	chromophore;	208
$[\mathbf{R} = (\mathbf{CH}_2)_3 \mathbf{NH} (\mathbf{NO}_2) \mathbf{C}_6 \mathbf{H}_3 \mathbf{NO}_2]$		nonlinear optical material (χ^2)	
(MeO) ₃ Si(CH ₂) ₃ NH-dye	CMS	pH indicator	208
Si(OEt) ₄ ,	HMS/CMS	Raman, XRD, TEM, MAS NMR,	63a,
(EtO) ₃ Si-X-Si(OEt) ₄		integral organic or organometallic	208
$[X = CHCH, C_2H_4,$		functionality (cf. Table 1)	
$CH_2CH=CHCH_2, 1, 4-C_6H_4$]		•	

^a Dye = 5,6-carboxyfluorecein, succinimidyl ester. HMS, hexagonal mesoporous silica. CMS, cubic mesoporous silica.

moveal was ascribed to a stabilizing effect (Scheme 9/(5)).¹⁹⁴

Co-condensation "one-pot" reactions of differently functionalized alkoxysilanes¹⁹⁵ in the presence of a templating reagent represent an alternative route compared to the postsynthetic modification of structurally highly ordered PMS materials. Table 7 summarizes applications of this co-condensation approach toward organic/inorganic hybrid materials.^{196–208} Although this method provides a uniform distribution of surface functionalities, the structural order of the resulting inorganic/organic hybrid materials is lower and markedly depends on reaction conditions (pH, temperature) and the molar ratios of the monomers employed.

5.2. Implications for Organic Synthesis and Catalysis. Surface-mediated secondary ligand exchange seems particularly viable to change the local environment of surface-bound metal centers.²⁰⁹ Silylamide grafting seems to be applicable for the high-throughput synthesis and screening of structurally defined rare earth metal catalysts on PMS materials.¹³² Thus, by means of parallel synthesis any desired number of intraporous ligand exchange reactions can be conducted simultaneously under identical conditions, resulting in a large and structurally diverse array of promising substances. Scheme 11 tackles the screening of rare earth metal grafted MCM-41 silica for asymmetric catalysis.

Furthermore, surface-confined metal species give access to a "small ligand chemistry" of oxophilic and electrophilic metal centers, unknown in solution chemistry due to agglomerization phenomena. As a standard example, the class of lanthanide alkoxide complexes

produces polymeric solid-state structures for OMe and OEt ligands, cluster compounds such as $Ln_5O(OiPr)_{13}$ for medium-sized ligands, and mononuclear complexes for the bulky ligand $OCtBu_3$ (Tritox).²¹⁰ Surface-mediated chemistry was shown to accomplish "mononuclear" Ln-alkoxide sites independent of the size of the ligand (Scheme 12). Such rare earth alkoxide surface complexes display subtly differentiated catalytic behavior in the MPV reduction of *tert*-butylcyclohexanone.⁸⁰

The PMS ligand not only affects the type of surface species formed during the grafting reaction but also atomically engineers the active metal site by acid/base and electronegativity effects through the M-O-X(support) linkage (connectivity). For example, surface sites of enhanced Lewis acidity, present in framework Alsubstituted PMS, dramatically influence the immobilization of metallocene complexes (Figure 4) and, hence, the formation of catalytically active species.¹¹² Similarly, the chemisorption of homoleptic β -diketonato complexes on dehydrated PMS is directed by the presence of framework heteroatoms. It was shown for several transition metal derivatives^{91,132} that ligand exchange occurred on Al-exchanged MCM-41 materials exhibiting a slightly higher degree of Brønsted acidity. The surface silanol groups of purely siliceous MCM-41 interact with the metal complexes via hydrogen bonding exclusively.

Consecutive grafting sequences according to Scheme 13 display a prominent route to tailor the reactivity of the surface for SOMC processes. The resulting heterobimetallic metal oxy/hydroxy layers can be employed to design nanostructured multifunctional heterogeneous catalysts.²¹¹ Initial investigations of grafted titania epoxidation catalysts revealed that modifying a dehydrated MCM-41 sample with Ge(IV) via GeBu₄ or GeEt₃-Cl prior to titanocene grafting substantially alters the performance of the catalysts. This promoting effect was attributed to the partial displacement of $Ti-O-Si\equiv$ linkages by $Ti-O-Ge\equiv$ connectivities.

Modified PMS materials obtained according to the heterogeneously performed silylamide route provide a

Scheme 14. The "Danishefsky Transformation" Mediated by [MCM-41]Ln(fod)_x

unique hydrophobic platform for the handling and isolation of sensitive substrate molecules and reaction intermediates. Such species show highly selective reaction behavior in the Danishefsky transformation, a special hetero-Diels-Alder reaction, to form product A exclusively, as shown in Scheme 14 (TOF = 70: Ln = Y, 50 °C).^{74,132} This was ascribed to an in situ silulation due to the released silylamine, ensuring the complete "end-capping" of all of the Brønsted acidic surface silanol groups. Supportive of this was the catalytic behavior of a hybrid material which was obtained by contacting a dehydrated MCM-41 sample directly with Y(fod)₃. Although the latter material displayed an enhanced initiative catalytic activity comparable to molecular complexes, conversion of product A into B was observed from the beginning.

The beneficial effect of an organically modified hydrophobic microenvironment for the catalytic performance was also shown for framework titanium-substituted²¹² and ligand-tethered PMS materials.²¹³

Pore confinement of the catalytic center can have a favorable effect in some respects including (i) protection of the reactive site from deactivation processes, (ii) stabilization of labile reaction intermediates, and (iii) control of product selectivity (regioselectivity, enantioselectivty) and morphology. For example, the long-time stability of a confined catalyst was demonstrated for the above-mentioned Y(fod)_x-catalyzed Danishefsky transformation (Scheme 14).74 The homogeneous catalyst $Y(fod)_3$ was more active at the beginning of the reaction; however, the conversion comes to an halt after ≈ 1 h (80%) and no further activity could be observed upon addition of another equivalent of the substrates. In contrast, although the initial activity of the PMSconfined catalyst was slightly decreased compared to its molecular congener due to diffusion limitation, almost 95% conversion is obtained after 50 h, and new subtrates are converted as quickly as the first time, revealing no marked decrease in activity toward the end of the reaction.

Figure 9. X-band EPR spectrum (T = 293 K) observed for Sm[N(SiHMe₂)₂]₂(THF)_x@MCM-41 (**A**) and Sm[N(SiHMe₂)₂]₂-(THF)_x@AS200 (**B**) under an argon atmosphere (EPR settings: $\nu = 9.05$ GHz, microwave power 2 mW, modulation frequency 100 kHz, modulation amplitude 0.05 mT; the two small satellites are due to the Mn²⁺ standard).¹³⁴

Ketyl radicals display key intermediates in the reduction of carbonyl compounds and their stabilization markedly influences the product selectivities. The unequivocal formation of surface ketyl radicals for the Sm(II)-mediated fluorenone/fluorenol transformation (Scheme 6) was revealed by their X-band EPR spectra (Figure 9, A).¹³⁴ The rigid bonding of the radical to the surface was indicated by the absence of any qualitative changes in the spectra for recording temperatures between 130 and 323 K. In contrast, ketyl radicals produced on a dehydrated ordinary silica material (Aerosil-200, Degussa-Hüls, surface area 200 m² g⁻¹) displayed a relatively weak EPR signal (Figure 9, B). Although nonporous Aerosil-200 gave similar Sm(II) surface species, showing qualitatively analogous reaction behavior, the ketyl radicals seem to be increasingly prone to hydrogen radical abstraction, as indicated by a significant amount of fluorenol in the supernatant solution. This ketyl destabilization was ascribed to the lack of the protective effect of the intrapore arrangement and the changed morphology of the Aerosil-200 silica material (presence of bulk silanol groups). The analysis of the BJH pore size distribution was in agreement with such a stabilization via pore confinement, indicating apparent total loss of pore volume and hence pore blocking (Figure 6).

Pore confinement of grafted homogeneous catalysts can be exploited for the nanofabrication of polymeric materials. A functionalized MSF material (mesoporous silica film) prepared by coating a mica plate with a PMS layer $(P6_3/mmc$ structure with the *c* axis perpendicular to the film),²¹⁴ grafted with titanocene according to Scheme 7, and activated with methylalumoxane (MAO) was shown to act as a nanoextruder for crystalline nanofibers of linear polyethylene (PE) with a ultrahigh molecular weight (6 200 000) and a diameter of 30-50nm.¹¹¹ It was proven by SAXS (small angle X-ray scattering) and DSC (differential scanning calorimetry) that the mesoscopic pores in MSF serve as a template to produce extended-chain crystals of PE. Formation of the kinetically favored chain folding process, typical of ordinary HDPE, is suppressed because the pore diameter (\approx 30 Å) is almost 1 order of magnitude smaller than

Figure 10. Schematic presentation of the polymerization of ethylene on a *m*esoporous *s*ilica *f*ilm (MSF).²¹⁴

Scheme 15. Idealized Propylene Extrusion Polymerization from [*rac*-C₂H₄(Ind)₂]ZrCl₂// MAO@MCM-41

the lamellar thickness (270 Å) of the folded chain crystals of ordinary PE. Such extrusion polymerization mechanistically mimics the biosynthesis of cellulose. Identically grafted nonfibrous PMS such as MCM-41 produced crystalline PE containing a fibrous fraction, which displayed an ordinary powder XRD and DSC pattern, however. The same procedure was used to synthesize a novel molecularly hybridized PE/silica composite thin film (Figure 10). In contrast, use of glass instead of mica plates produced islanded PMS films and, as a consequence, islanded PE/silica composites.²¹⁵

Heterogeneous single-site olefin polymerization catalysts obtained by subsequently reacting dehydrated MCM-41 with MAO and [rac-C₂H₄(Ind)₂]ZrCl₂ (Scheme 15) were also reported to affect the polymer morphology.¹⁰¹ Propylene extrusion polymerization gave spherulite polypropylene (PP) particles of approximate diameter 10 μ m, featuring a distinct core and shell arrangement. Although displaying a quarter of the activity (\approx 1400 kg of PP/(mol of Zr atm h)), these catalyts produced a 4-fold increase in the number-average molecular mass of PP (similar polydispersity 1.9) and a higher isotacticity PP (83%) relative to the homogeneous system (78%).¹⁰⁰ Better stereocontrol was associated with a lower monomer concentration at the active sites, disfavoring 1.3 insertion, and could be even enhanced by utilization of the extra large pore zeotype VPI-5 as a support material (Table 1).

Application of a different grafting procedure, involving formation of an in situ alumoxane-coated MCM-41 via reaction of hydrated MCM-41 with AlMe₃ solution, and addition of $[C_2H_4(Ind)_2]$ ZrMe₂, produced a highly efficient catalyst for the copolymerization of ethylene and propylene (\approx 4000 kg of PP/(mol of Zr atm h)).¹⁰² The

Figure 11. Chiral palladium complex tethered on MCM-41 via a silane-functionalized ferrocenyl ligand.¹⁹⁰

catalytic activity of the heterogeneous catalyst, which was still active at Al/Zr ratios of 40, was significantly higher than that of the homogeneous system. Decreasing pore radii of the MCM-41 support were found to increase the molecular weight (M_n : $1.28 \times 10^{-3} \rightarrow 1.73 \times 10^{-3}$) and to change the physicochemical properties of the copolymer (liquid \rightarrow wax). The large surface areas of the supported catalysts were proposed to suppress bimolecular deactivation processes.

Trimethylsilyl-pretreated MCM-41 materials of different average pore diameter were employed for the adsorptive separation of the structurally elusive MAO.⁹⁹ PMS materials prepared from a C₁₆ surfactant were able to retain the most active fraction of co-catalyst MAO as shown for the Cp₂ZrCl₂-mediated (approximate molecular size 7.9 \times 7.9 Å) polymerization of ethylene conducted independently with the "solution and solid fraction".

Chromium surface species generated by calcination of Cr(acac)₃-treated MCM-41 samples at 550-720 °C in oxygen were shown to be active in the gas-phase and slurry-phase polymerization of ethylene at 100 °C.⁹¹ The catalytic performance of a Al-MCM-41-derived material was 14 kg of PE/(mol of Cr atm h), which is ca. a tenth of those of industrially applied Cr/SiO₂ catalysts (e.g., Union Carbide Catalyst, Figure 1/A), however, much better than those observed for Cr-Y zeolites. The same study revealed that purely siliceous MCM-41 and to a higher extent Al-MCM-41 display some catalytic activity in ethylene polymerization. The PE chains initially produced within the mesopores feature bundles of nanofibers of PE with a length of about 1 μ m and a diameter of 50-100 nm. However, upon "prolonged" polymerization, the catalyst gradually fragments, producing crystalline and amorphous PE with a low bulk density and a high load melt flow index.

Tethering of a chiral catalyst derived from 1,1'-bis-(diphenylphosphino)ferrocene and palladium(II) chloride to the inner walls of MCM-41 as shown in Figure 11 exerted a dramatic increase in regioselectivity and enantioselectivity in the allylic amination of cinnamyl acetate.¹⁶⁷ The anchored catalyst (50% preferred branched product/99% ee) was far superior to its homogeneous counterpart (2%/43%) and to a closely related nonporous carbosil-supported catalyst (<1%/racemate). A slightly modified catalyst displayed increased activity (TON 291) and enantioselectivity (17% ee) in the hydrogenation of ethyl nicotinate to ethyl nipecotinate relative to an analogous homogeneous silsesquioxane system (TON 98, racemate).¹⁹⁰ This catalytic behavior was ascribed to a chiral confinement of the catalytic center featuring a deliberately restricted spatial freedom

Figure 12. Nanostructures that can be templated inside cylindrical templates. 115

Scheme 16. Ring-Opening Polymerization of a [1]Silaferrocenophane within the Channels of PMS

in its vicinity. Apparently, the design of highly stereoselective (enantiomeric) catalysts is feasible...when the active site is situated at the extremity of the tether, and is free to flutter in the molecular breeze during the process of the catalytic conversion.¹⁹⁰

5.3. Implications for Material Science. The exploitation of PMSs as nanostructured host components is stimulated by the electronic systems technology and the search for devices with optoelectronic properties governed by low dimensionality.4,149,216 PMS-based inorganic/inorganic and inorganic/organic composite materials can be designed as nanoparticles, nanowires, and nanotubes (Figure 12).²¹⁷ Inorganic and organic precursors were initially employed to construct nanowires inside the hexagonally arranged pores of MCM-41 with translational symmetry in two dimensions. Nanosized guest components introduced via salt impregnation and gas-phase deposition include GaN, 218 Si, 219 Ge, 220 Fe $_2O_3, ^{221}$ Pt, 222 ZnO, 223 CdS, 224 Ag, 225 graphite-type carbon,²²⁶ and polyaniline.²²⁷ The application of organometallic precursors for the production of nanostructured materials with optoelectronic and magnetic functionality can fall back upon metal organic chemical vapor deposition (MOCVD)²²⁸ and sol-gel processes²²⁹ established for the production of thin films of semiconductors and hard coatings.

Solution and gas-phase impregnation techniques were applied to functionalize the dehydrated pore walls of MCM-41 with (1,1'-ferrocenediyl)dimethylsilane.^{114–116} A multifunctional reaction originating from the susceptibility of [1]ferrocenophanes to nucleophilic attack by hydroxy groups and ring-opening polymerization under release of ring strain (Scheme 16)²³⁰ was already detected at low loadings. Both ring-opened monomers and hyperbranched oligomers were asigned on the basis of MAS NMR spectroscopy.¹¹⁴ At higher loadings additionally adsorbed monomer was converted into polymers between 75 and 200 °C accompanied by a color change from orange to yellow. Pyrolysis at 900 °C under nitrogen gave a black and magnetic ceramic without collapse of the ordered hexagonal structure.¹¹⁵

GaAs/MCM-41¹⁰³ and InP/MCM-41¹⁰⁴ heterostructures were synthesized by MOCVD techniques according to Scheme 17, employing common group 13 and group 15 sources. Quantum confinement effects^{4,149}

Scheme 17. Generation of Quantum-Confined III–V Semiconductors inside MCM-41 by MOCVD

Ga(CH_)	⊥ ∆etBua ⊥	MCM-41	MOCVD H ₂ , 100 s
Ga(0113)3	+ Asibug +	dehydr.	
0.88 Torr	0.014 Torr	700 °C	
			"GaAs"@MCM-41

In(CH ₃) ₃	+	MCM-41 _{dehydr.}	MOCVD 52 °C/N ₂ ,H ₂ 4 h	In(CH ₃) ₃ @MCM-41
			PH ₃ 300 °C, 3 h - CH₄	י ╼ "InP"@MCM-41

Scheme 18. Formation of a Telluride/Tellurolate Cluster inside MCM-41 [Cu₅₀(µ₃-TePh)₂₀Te₁₇(PPh₂Et)₈][PPh₃Et]₄ Was Observed in Solution²³¹

	mechanical mixing 110 °C/10 ⁻³ Torr (static) > 12 h	
$Cu_6(1ePn)_6(PPn_2Et)_5 + MCM-4$	dehydr.	
	hexane, r.t. low pressure Hg lamp (λ > 254 nm)	
Cu ₆ (1ern) ₆ (rrn ₂ cl)5@MCM-41	– TePh ₂ , PPh ₂ Et	
{Curo(TePh)onTerr(PPhoEt)al ⁴⁻ }@	MCM-41	
	– TePh ₂ , PPh ₂ Et	

"CuTe"@MCM-41

brought about by the nanoparticle size regime of the semiconductor fillings were evidenced by blue shifting of the band gap dependent transition of the UV-visible absorption spectra and upfield shifting of the indium phosphorus resonance in the ³¹P MAS NMR spectra. Although the interpretation of the photoluminescence spectra is hampered by the existence of large surface-deposited particles (e.g., 200-Å-thick GaAs layers), the photoluminescence maxima depend on the MCM-41 pore diameter supporting size-quantized semiconductor crystallites whose growth is restricted by the pore diameter of MCM-41. Application of HRTEM and PXRD corroborated these findings.

Impregnation of MCM-41 with heterobimetallic cluster $[Co_3Ru(CO)_{12}][NEt_4]$ in THF, followed by thermal treatment under argon, produced highly dispersed magnetic nanoparticles with a narrow size distribution as evidenced by TEM; the dispersion was achieved under milder conditions compared to conventional metal salt precursors.¹²³ Dynamic and isothermal magnetic measurements revealed the formation of pore-confined magnetic metal particles as low as 250 °C.²³¹ Quantumconfined copper telluride nanoparticles were obtained through cluster condensation via thermal activation and photolysis of $Cu_6(TePh)_6(PPh_2Et)_5$ inside the pores of MCM-41.⁹⁴ Pore entrapment was suggested by UV– visible spectroscopy, PXRD, and nitrogen physisorption (Scheme 18).

Dimensionally ordered silicon nanowires were prepared by a novel supercritical fluid solution-phase technique.²³² The pores of PMS were rapidly filled by degrading diphenylsilane in a high-pressure reaction cell at 500 °C and a pressure of 375 bar for 15 min. Pore filling and structural order of the orange nanocomposite material were proven by nitrogen physisorption, PXRD, TEM, and MAS NMR spectroscopy. The blue-shifted absorption detected is likely associated with quantum confinement effects.

SOMC on mesoporous metal oxides further expands the fabrication of new materials with novel optoelectronic and magnetic properties. Particularly, transition metal oxide decorated pore walls allow distinct hostguest interactions. Their capacity for variable oxidation states, which is not shared by PMS analogues, can be exploited for, for example, the stabilization of mixedoxidation state grains of type $M^{n+}/M^{(n+x)+}$. According to this strategy, (trimethylsilyl-silylated) mesoporous niobium oxide²³³ was shown to act as an electron acceptor in a supermagnetic cobaltocene (Cp₂Co⁺/Cp₂Co) composite,²³⁴ for bis(arene) chromium $((C_6H_6)_2Cr^+/(C_6H_6)_2)^-$ Cr) nanowires,²³⁵ and for potassium fulleride (K₃C₆₀) nanowires.²³⁶ The electronic properties of the niobium oxide host could be tuned by reduction with varying amounts of sodium naphthalene producing black, airsensitive materials.²³⁷

6. Conclusions

Clearly, organometallic chemistry on periodic mesoporous silica, PMS, has to resemble that on amorphous and nonporous silica materials. However, changed surface morphologies and varying bulk effects afford subtle changes of surface attachment (e.g., podality Π^m) and electronic effects. In addition, the uniform composition and periodic structure of PMS materials produce well-defined nanoparticle replicas for the design of new chemicals and inorganic/organic composite materials. Nanosized cavities make these supramolecular systems ideal for use as precise reaction chambers accessible to an extended intraporous chemistry ("molecular factories"). Encapsulation and surface grafting yield confined nonagglomerated metal ligand species or nanoparticles, primarily by steric effects. Novel reaction pathways, arising from such sterically highly unsaturated metal centers surpass the phenomenology of contemporary molecular organometallic chemistry. An advanced concept of surface silvlation will prove to be an efficient method for tailoring the meso- and microenvironment of nanostructured catalysts and to narrow the gap between nature and innovation. For example, extrusion polymerization of ethylene by metallocene-modified PMS mechanistically mimics the biosynthesis of cellulose¹¹¹ and metal alkoxide-grafted PMSs reveal analogies to vanadium bromoperoxidase in the catalytic peroxidative halogenation of large organic substrates at neutral pH.⁹² A better understanding of the surface reactivity and attachment of the organometallic compounds/fragments and silylating reagents will be provided by the application of multivalent molecular model oxo surfaces (Figure 13).^{238–240} Oligosilsesquioxane²³⁸ and calix[n]arene²³⁹ ligands seem to qualify as superior mimics despite considerable kinetic and thermodynamic limitations.

The promising liaison of PMS and (pseudo)organometallic chemistry is not restricted to the concept of postsynthetic surface derivatization through grafting.

Figure 13. Molecular oxo surfaces for the modeling of SOMC@PMS. $^{238-240}$

Ship-in-the-bottle techniques can be used to synthesize organometallic/inorganic composite materials as evidenced by the formation of $[Pt_{15}(CO)_{30}]^{2-}$ via impregnation of MCM-41 with H₂PtCl₆ and subsequent reductive carbonylation.¹³⁹ Metal alkoxide derivatives of, for example, aluminum, titanium, and niobium, are routinely employed to incorporate metal centers into the siliceous framework²⁴¹ and as a source for the synthesis of bulk mesoporous metal oxides according to a template assisted sol–gel process.²⁴² Moreover, various organometallic reagents including CH₃ReO₃²⁴³ and Cp₂TiCl₂²⁴⁴ were used as dopants during hydrothermal synthesis. Finally, ferrocene-functionalized surfactant molecules²⁴⁵ and silica precursor molecules^{63,246} act as structure-directing reagents for the synthesis of mesostructured metal oxides.

Acknowledgment. I would like to thank my coworkers Gisela Gerstberger, Iris Nagl, Clemens Palm, and Markus Widenmeyer, who worked on this research topic, for their shared enthusiasm and their patience and technical assistance during the writing of this review. Our research is generously supported by Deutsche Forschungsgemeinschaft.

References

- (a) Robinson, A. L. Science 1976, 194, 1261. (b) Hartley, F. R.; Vezey, P. N. Adv. Organomet. Chem. 1977, 15, 189. (c) Bailey, D. C.; Langer, S. H. Chem. Rev. 1981, 81, 109. (d) Schwartz, J. Acc. Chem. Res. 1985, 18, 302. (e) Iwasawa, Y. Adv. Catal. 1987, 35, 187. (f) Basset, J.-M., Gates, B. C., Candy, J. P., Choplin, A., Leconte, H., Quignard, F., Santini, C., Eds. Surface Organometallic Chemistry, Molecular Approaches to Surface Catalysis, Kluwer: Dordrecht, 1988. (g) Lamb, H. H.; Gates, B. C.; Knözinger, H. Angew. Chem. 1988, 100, 1162; Angew. Chem., Int. Ed. Engl. 1988, 27, 1127. (h) Gates, B. C. J. Mol. Catal. 1989, 52, 1. (i) Marks, T. J. Acc. Chem. Res. 1992, 25, 57. (j) Zechina, A.; Areán, C. O. Catal. Rev.-Sci. Eng. 1993, 35, 262.
 (a) (a) C. C. C. CHEMERCHER (1990), 172. (b)
- (2) (a) Iwasawa, Y.; Gates, B. C. CHEMTECH 1989, 173. (b) Sachtler, W. M. H.; Zhang, Z. Adv. Catal. 1993, 39, 129.
- (3) (a) Stucky, G. D.; MacDougall, J. E. Science 1990, 247, 669. (b) Stucky, G. D. Prog. Inorg. Chem. 1992, 40, 99. (c) Behrens, P.; Stucky, G. D. In Comprehensive Supramolecular Chemistry; Alberti, G., Bein, T., Eds.; Elsevier: Oxford, 1996; Vol. 7, p 721. (d) Schüth, F. Chem. Zeit. 1995, 29, 42.
- (4) (a) Ozin, G. A.; Özkar, S.; Prokopowicz, R. A. Acc. Chem. Res. 1992, 25, 553. (b) Bein, T. In Comprehensive Supramolecular Chemistry; Alberti, G., Bein, T., Eds.; Elsevier: Oxford, 1996; Vol. 7, p 579.
- (5) McDaniel, M. P. Adv. Catal. 1985, 33, 47.
- (6) (a) Karol, F. J.; Karapinka, G. L.; Wu, C.; Dow, A. W.; Johnson, R. N.; Carrick, W. L. J. Polym. Sci. A 1972, 10, 2621. (b) Karol, F. J.; Wu, C.; Reichle, W. T.; Maraschin, N. J. J. Catal. 1979, 60, 68. (c) Zecchina, A.; Spoto, G.; Bordiga, S. Faraday Discuss. Chem. Soc. 1989, 87, 149. (d) Schnellbach, M.; Köhler, F. H.; Blümel, J. J. Organomet. Chem. 1996, 520, 227, and references therein.
- (7) (a) Soares, J. B. P.; Hamielec, A. E. *Polym. React. Eng.* **1995**, *3*, 131. (b) Fink, G., Mülhaupt, R., Brintzinger H. H., Eds. *Ziegler Catalysts*; Springer-Verlag: Berlin, 1995. (c) Hlatky, G. G. *Chem. Rev.* **2000**, *100*, 1347. Fink, G.; Steinmetz, B.; Zechlin, J.; Przybyla, C.; Tesche, B. *Chem. Rev.* **2000**, *100*, 1377.

- (8) (a) Kamfjord, T.; Wester, T. S.; Rytter, E. Macromol. Chem., Rapid. Commun. 1998, 19, 505. (b) Soga, K.; Kaminaka, M. Macromol. Chem., Rapid. Commun. 1992, 13, 221. (c) Chien, J. C. W.; He, D. J. Polym. Sci. A 1991, 29, 1603. (d) Sacchi, M. C.; Zucchi, D.; Tritto, I.; Locatelli, P.; Dall'Occo, T. Macromol. Chem., Rapid. Commun. 1995, 16, 581.
- (9) (a) Yermakov, Y. I.; Lazutkin, A. M.; Demin, E. A.; Grabovskii, Y. P.; Zakharov, V. A. Kinet. Katal. 1972, 13, 1422. (b) Zakharov, V. A.; Dudchenko, V. K.; Paukshtis, E. A.; Karakchiev, L. G.; Yermakov, Y. I. J. Mol. Catal. 1977, 2, 421. (c) Zakharov, V. A.; Yermakov, Y. I. Catal. Rev. Sci. Eng. 1979, 19, 67, and references therein.
- (10) (a) Schwartz, J.; Ward, M. D. J. Organomet. Chem. 1980, 8, 465.
 (b) Gell, K. I.; Posin, B.; Schwartz, J.; Williams, G. M. J. Am. Chem. Soc. 1982, 104, 1846. (c) King, S. A.; Schwartz, J. Inorg. Chem. 1991, 30, 3771.
- (11) (a) Basset, J.-M.; Choplin, A. *J. Mol. Catal.* **1983**, *21*, 95. (b) Scott, S. L.; Basset, J.-M.; Niccolai, G. P.; Santini, C. C.; Candy, J.-P.; Lecuyer, C.; Quignard, F.; Choplin, A. *New. J. Chem.* **1994**, *18*, 115.
- (12) Corker, J.; Lefebvre, F.; Lécuyer, C.; Dufaud, V.; Quignard, F.; Choplin, A.; Evans, J.; Basset, J.-M. Science 1996, 271, 966.
- (13) (a) Hutchings, G. Chem. Britain 1992, 1006. (b) Thomas, J. M. Chem. Eur. J. 1997, 3, 1557. (c) Thomas, J. M. Angew. Chem. 1999, 111, 3800; Angew. Chem., Int. Ed. Engl. 1999, 38, 3588.
 (d) Barton, T. J.; Bull, L. M.; Klemperer, W. G.; Loy, D. A.; McEnaney, B.; Misono, M.; Monson, P. A.; Pez, G.; Scherer, G. W.; Vartuli, J. C.; Yaghi, O. M. Chem. Mater. 1999, 11, 2633.
- W.; Vartuli, J. C.; Yaghi, O. M. *Chem. Mater.* **1999**, *11*, 2633.
 (14) (a) Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. *Nature* **1992**, *359*, 710. (b) Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T.-W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L. *J. Am. Chem. Soc.* **1992**, *114*, 10834.
- (15) Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. *Science* **1998**, *279*, 548.
- (16) For review articles, see: (a) Schüth, F. Ber. Bunsen-Ges. Phys. Chem. 1995, 99, 1306. (b) Sayari, A. Stud. Surf. Sci. Catal. 1996, 102, 1. (c) Zhao, X. S.; Lu, G. Q.; Millar, G. J. Ind. Eng. Chem. Res. 1996, 35, 2075. (d) Corma, A. Chem. Rev. 1997, 97, 2373. (e) Biz, S.; Occelli, M. L. Catal. Rev.-Sci. Eng. 1998, 40, 329. (f) Corma, A.; Kumar, D. Stud. Surf. Sci. Catal. 1998, 117, 201. (g) Ciesla, U.; Schüth, F. Microporous Mesoporous Mater. 1999, 27, 131. (h) Guizard, C. G.; Julbe, A. C.; Ayral, A. J. Mater. Chem. 1999, 9, 55.
- (17) For recent review articles on the modification of mesoporous silica materials, see: (a) Clark, J. H.; Macquarrie, D. J. Chem. Commun. 1998, 853. (b) Moller, K.; Bein, T. Chem. Mater. 1998, 10, 2950. (b) Ying, J. Y.; Mehnert, C. P.; Wong, M. S. Angew. Chem. 1999, 111, 58; Angew. Chem. Int. Ed. 1999, 111, 56.
- (18) Huber, C.; Moller, K.; Bein, T. J. Chem. Soc., Chem. Commun. 1994, 2619.
- (19) Petrucci, M. G. L.; Kakkar, A. K. Adv. Mater. 1996, 8, 251.
- (20) Zhao, M.; Crooks, R. M. Adv. Mater. 1999, 11, 217.
- (21) Herron, N. CHEMTECH 1989, 542.
- (22) Ozin, G. A. Adv. Mater. 1992, 4, 612.
- (23) (a) Hölderich, W.; Hesse, M.; Näumann, F. Angew. Chem. 1988, 100, 232. (b) Suib, S. L. Chem. Rev. 1993, 93, 803. (c) Davis, M. E. Acc. Chem. Res. 1993, 26, 11. (d) Ozin, G. A.; Kuperman, A.; Stein, A. Angew. Chem. Adv. Mater. 1989, 373; Angew. Chem., Int. Ed. Engl., Adv. Mater. 1989, 359. (e) Reddy, J. S.; Kumar, R. J. Catal. 1991, 130, 440. (f) Weitkamp, J. In Proceedings of the 9th International Zeolite Conference; von Ballmoos, R., Higgins, J. B., Treacy, M. M. J., Eds.; Butterworth-Heinemann: Woburn, MA, 1993; p 13.
- (24) (a) Ozin, G. A.; Özkar, S.; Prokopowicz, R. A. Acc. Chem. Res. 1992, 25, 553. (b) Ichikawa, M. Adv. Catal. 1992, 38, 283. (c) Sachtler, W. M. H.; Zhang, Z. Adv. Catal. 1993, 39, 129. (d) Sachtler, W. M. H. Acc. Chem. Res. 1993, 26, 383. (e) Schneider, A. M.; Behrens, P. Chem. Mater. 1998, 10, 679.
- (25) Lefebvre, F.; de Mallmann, A.; Basset, J.-M. Eur. J. Inorg. Chem. 1999, 361, and references therein.
- (26) (a) O'Hare, D. In *Inorganic Materials*; Bruce, D. W., O'Hare, D., Eds.; Wiley: Chichester, 1992. (b) O'Hare, D. *New. J. Chem.* **1994**, *18*, 989.
- (27) Morikawa, Y. Adv. Catal. 1993, 39, 303.
- (28) (a) de Ruiter, R.; Jansen, J. C.; van Bekkum, H. In *Molecular Sieves*; Occelli, M. L., Robson, H. E., Eds.; Van Nostrand Reinhold: New York, 1992; Chapter 14. (b) Murray, J.; Sharp, M. J.; Hockey, J. A. *J. Catal.* **1970**, *18*, 52.
- (29) (a) Li, Z.; Mallouk, T. E. J. Phys. Chem. 1987, 91, 643. (b) Ozin, G. A.; Godber, J. J. Phys. Chem. 1989, 93, 878.
- (30) Théolier, A.; Custodero, E.; Choplin, A.; Basset, J.-M.; Raatz, F. Angew. Chem. 1990, 102, 803; Angew. Chem., Int. Ed. Engl. 1990, 29, 805.
- (31) Breck, D. W. Zeolite Molecular Sieves; Wiley: New York, 1974; p 56.

- (32) (a) Delprato, F.; Delmotte, L.; Guth, J. L.; Huve, L. Zeolites 1990, (a) 546. (b) Lievens, J. L.; Verduijn, J. P.; Bons, A.-J.; Mortier,
 W. J. Zeolites 1992, 12, 698.
- (33) Lok, B. M.; Messina, C. A.; Patton, R. L.; Gajek, R. T.; Cannan, T. R.; Flanigen, E. M. J. Am. Chem. Soc. 1984, 106, 6092.
- (34) Wright, P. A.; Jones, R. H.; Natarajan, S.; Bell, R. G.; Chem, J.; Hursthouse, M. B.; Thomas, J. M. J. Chem. Soc., Chem. Commun. 1993, 633.
- (35) Bu, X.; Feng, P.; Stucky, G. D. *Science* **1997**, *278*, 2080.
 (36) Freyhardt, C. C.; Tsapatsis, M.; Lobo, R. F.; Balkus, K. J., Jr., Davis, M. E. *Nature* **1996**, *381*, 295.
- (37) Wagner, P.; Yoshikawa, M.; Lovallo, M.; Tsuji, K.; Taspatsis, M.; Davis, M. E. Chem. Commun. 1997, 2179
- (38) Wilson, S. T.; Lok, B. M.; Messina, C. A.; Cannan, T. R.; Flanigen, E. M. J. Am. Chem. Soc. 1982, 104, 1146.
- (39) (a) Annen, M. J.; Young, D.; Davis, M. E.; Cavin, O. B.; Hubbard, C. R. J. Phys. Chem. **1991**, *95*, 1380. (b) McCusker, L. B.; Baerlocher, C.; Jahn, E.; Bülow, M. Zeolites **1991**, *11*, 308.
- (40) Loiseau, T.; Férey, G. J. Solid State Chem. 1994, 111, 413. (41) Davis, M. E.; Saldarriaga, C.; Montes, C.; Garces, J.; Crowder, C. Nature **1988**, 331, 698.
- (a) Davis, M. E. Nature 1991, 352, 281. (b) Estermann, M.; (42)McCusker, L. B.; Baerlocher, C.; Merrouche, A.; Kessler, H. Nature 1991, 352, 320.
- (a) Jones, R. H.; Thomas, J. M.; Chen, J.; Xu, R.; Huo, Q.; Li, S.;
 Ma, Z.; Chippindale, A. M. J. Solid State Chem. 1993, 102, 204.
 (b) Huo, Q.; Xu, R.; Li, S.; Xu, Y.; Ma, Z.; Yue, V.; Li, L. In Proceedings of the 9th International Zeolite Conference, von (43)Ballmoos, R., Higgins, J. B., Treacy, M. M. J., Eds.; Butterworth-Heinemann: Woburn, MA, 1993; p 279.
- (44) Huo, Q.; Margolese, D. I.; Ciesla, U.; Demuth, D. G.; Feng, F Gier, T. E.; Sieger, P.; Firouzi, A.; Chmelka, B. F.; Schüth, F.; Stucky, G. D. *Chem. Mater.* **1994**, *6*, 1176.
- (45) Morey, M. S.; Davidson, A.; Stucky, G. D. J. Porous Mater. 1998, 5. 195
- Vartuli, J. C.; Schmitt, K. D.; Kresge, C. T.; Roth, W. J.; Leonowicz, M. E.; McCullen, S. B.; Hellring, S. D.; Beck, J. S.; Schlenker, J. L.; Olson, D. H.; Sheppard, E. W. *Chem. Mater.* (46)1994, 6, 2317.
- (47) Kim, J. M.; Kim, S. K.; Ryoo, R. Chem. Commun. 1998, 259.
 (48) Corma, A.; Kan, Q.; Rey, F. Chem. Commun. 1998, 579.
- (49) Xu, J.; Luan, Z.; He, H.; Zhou, W.; Kevan, L. Chem. Mater. 1998, 10. 3690.
- (50) (a) Yanagisawa, T.; Shimizu, T.; Kuroda, K.; Kato, C. Bull. Chem. Soc. Jpn. 1990, 63, 988. (b) Inagaki, S.; Fukushima, Y.; Kuroda, K. J. Chem. Soc., Chem. Commun. 1993, 680. (c) Inagaki, S.; Koiwai, A.; Suzuki, N.; Fukushima, Y.; Kuroda, K. Bull. Chem. Soc. Jpn. 1996, 69, 1149.
- (51) Chen, C.-Y.; Xiao, S.-Q.; Davis, M. E. Microporous Mater. 1995, 4.1.
- (52) Ryoo, R.; Kim, J. M.; Ko, C. H.; Shin, C. H. J. Phys. Chem. 1996, 100, 17718.
- (a) Huo, C.; Leon, R.; Petroff, P. M.; Stucky, G. D. Science 1995. (53)(a) Aldy, C., Berley, R., 1 effort, F. M., Statesy, G. D. Shence 1000, 268, 1324. (b) Huo, C.; Margolese, D. I.; Stucky, G. D. Chem. Mater. **1996**, *8*, 1147.
- (54) Kim, M. J.; Ryoo, R. Chem. Mater. 1999, 11, 487.
- (55) Kruk, M.; Jaroniec, M.; Ryoo, R.; Kim, J. M. Chem. Mater. 1999, 11. 2568.
- (56) Tanev, P. T.; Pinnavaia, T. J. Science 1995, 267, 865.
- (a) Bagshaw, S. A.; Prouzet, E.; Pinnavaia, T. J. Science 1995, (a) Dagshaw, S. A., Houzet, E., Hindavaa, T. J. Scienter 1939, 269, 1242. (b) Prouzet, E.; Pinnavaia, T. J. Angew. Chem. 1997, 109, 533; Angew. Chem., Int. Ed. Engl. 1997, 36, 516.
 (58) (a) Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B. F.; Stucky, G. D. J. Am. Chem. Soc. 1998, 120, 6024. (b) Zhao, D.; Sun, J.; Li, Q.; Am. Chem. Soc. 1998, 120, 6024. (b) Zhao, D.; Sun, J.; Li, Q.;
- Stucky, G. D. Chem. Mater. 2000, 12, 275. (c) Kruk, M.; Jaroniec, M. Chem. Mater. 2000, 12, 1961
- (59) Zhao, D.; Huo, Q.; Feng, J.; Kim, J.; Han, Y.; Stucky, G. D. Chem. Mater. 1999, 11, 2668.
- (60) (a) Schmidt-Winkel, P.; Luskens, W. W., Jr.; Yang, P.; Margolese,
 D. I.; Lettow, J. S.; Ying, J. Y.; Stucky, G. D. *Chem. Mater.* 2000,
 12, 686. (b) Lukens, W. W., Jr.; Yang, P.; Stucky, G. D. *Chem.* Mater. 2001, 13, 28.
- (61) (a) Inagaki, S.; Guan, S.; Fukushima, Y.; Ohsuna, T.; Terasaki, O. J. Am. Chem. Soc. **1999**, *121*, 9611. (b) Inagaki, S.; Guan, S.; Fukushima, Y.; Ohsuna, T.; Terasaki, O. Stud. Surf. Sci. Catal. 2000, 129, 155.
- (62) Melde, B. J.; Holland, B. T.; Blanford, C. F.; Stein, A. Chem. Mater. 1999, 11, 3302.
- (a) Asefa, T.; MacLachlan, M. J.; Coombs, N.; Ozin, G. A. Nature (63)1999, 402, 867. (b) Yoshina-Ishii, C.; Asefa, T.; Coombs, N.; MacLachlan, M. J.; Ozin, G. A. *Chem. Commun.* **1999**, 2539. (c) Asefa, T.; Yoshina-Ishii, C.; MacLachlan, M. J.; Ozin, G. A. *J.* Mater. Chem. 2000, 10, 1751.
- (64) (a) Kruk, M.; Jaroniec, M.; Sayari, A. Chem. Mater. 1999, 11, 492. (b) Ravikovitch, P. I.; Neimark, V. A. Langmuir 2000, 16, 2419.
- (a) Herron, N.; Stucky, G. D.; Tolman, C. A. *Inorg. Chim. Acta* **1985**, *100*, 135. (b) Herron, N. *Inorg. Chem.* **1986**, *25*, 4714. (65)

- (66) De Vos, D. E.; Thibault-Starzyk, F.; Knops-Gerrits, P. P.; Parton, R. F.; Jacobs, P. A. Macromol. Symp. 1994, 80, 157.
- (67) Hutchings, G. J. Chem. Commun. 1999, 301, and references therein.
- Wang, X.; Zhao, H.; Lefebvre, F.; Basset, J.-M. Chem. Lett. 2000, (68) 1164
- (a) Moore, P. B.; Shen, J. Nature 1983, 306, 356. (b) Smith, J. (69) V.; Dytrych, W. J. Nature 1984, 309, 607. (c) Smith, J. V. Chem. Rev. 1988, 88, 149. (d) Löw, R.; Ernst, S.; Kiss, A.; Kleinschmitt, P.; Weitkamp, J. Chem.-Ing.-Technol. 1991, 63, 746. (e) Weitkamp, J.; Schumacher, R. In Proceedings of the 9th International Zeolite Conference; von Ballmoos, R.; Higgins, J. B., Treacy, M. M. J., Eds.; Butterworth-Heinemann: Woburn, MA, 1993; p 353. (f) Davis, M. E.; Acc. Chem. Res. 1993, 26, 111. (g) Ernst, S.; Weitkamp, J. Catal. Today 1994, 19, 27. (h) Weitkamp, J.; Ernst, S. Catal. Today 1994, 19, 107. (i) Akporiaye, D. E. Angew. Chem. 1998, 110, 2594; Angew. Chem., Int. Ed. 1998, 2456, 6.
- (70) Vansant, E. F.; Van Der Voort, P.; Vrancken, K. C. (Eds.) Characterization and Chemical Modification of the Silica Surface; Studies in Surface Science and Catalysis 93; Elsevier: Amsterdam, 1995.
- (71) (a) Ishikawa, T.; Matsuda, M.; Yasukawa, A.; Kandori, K.; Inagaki, S.; Fukushima, T.; Kondo, S. J. Chem. Soc., Faraday Trans. 1996, 92, 1985. (b) Jentys, A.; Pham, N. H.; Vinek, H. J.
- (72) Morrow, B. A.; Cody, I. A. J. Phys. Chem. 1976, 80, 1995.
 (73) Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquérol, J.; Siemieniewska, T. Pure Appl. Chem. 1995, 57, 602. Chem. 1985, 57, 603.
- (74)Gerstberger, G.; Palm, C.; Anwander, R. Chem. Eur. J. 1999, 5, 997.
- (75) Anwander, R.; Top. Organomet. Chem. 1999, 2, 1.
- (a) Parks, G. A. *Chem. Rev.* 1965, 65, 177. (b) Treyakov, N. E.; (76) Filimonov, K. N. Kinet. Katal. 1972, 13, 815. (c) Iller, R. K. The Chemsitry of Silica; Wiley-Interscience: New York, 1979. (d) Unger, K. K. Porous Silica; Elsevier: Amsterdam, 1979.
- (77) McCullen, S. B.; Vartuli, J. C. U.S. Patent 5,156,829, 1992 (Mobil Oil Corporation).
- (78) Anwander, R.; Palm, C.; Gerstberger, G.; Groeger, O.; Engel-
- hardt, G. *Chem. Commun.* 1998, 1811.
 (a) Mokaya, R.; Jones, W. *Chem. Commun.* 1997, 2185. (b) Mokaya, R. *Chem. Commun.* 2000, 1541. (c) Mokaya, R. *Chem.* (79)Commun. 2000, 1891.
- (80) Anwander, R.; Palm, C. Stud. Surf. Sci. Catal. 1998, 117, 413.
- (a) Luan, Z.; Maes, E. M.; van der Heide, P. A. W.; Zhao, D.; (81)Czernuszewicz, R. S.; Kevan, L. Chem. Mater. 1999, 11, 3680. (b) Morey, M. S.; O'Brien, S.; Schwarz, S.; Stucky, G. D. Chem. Mater. 2000, 12, 898
- (82) Hagen, A.; Wei, D.; Haller, G. L. Stud. Surf. Sci. Catal. 1998, *117*, 191.
- Ortlam, A.; Wark, M.; Schulz-Ekloff, G.; Rathousky, J.; Zukal, (83)A. Stud. Surf. Sci. Catal. 1998, 117, 357
- (84) Zheng, S.; Gao, L.; Zhang, Q.-H.; Guo, J.-K. J. Mater. Chem. **2000**, *10*, 723.
- Morey, M. S.; Stucky, G. D.; Schwarz, S.; Fröba, M. J. Phys. Chem. B 1999, 103, 2037. (85)
- Xia, Q.-H.; Hidajat, K.; Kawi, S. Chem. Commun. 2000, 2229. (86)Vercruysse, K. A.; Klingeleers, D. M.; Colling, T.; Jacobs, P. A. Stud. Surf. Sci. Catal. 1998, 117, 469. (87)
- (a) Van Der Voort, P.; Morey, M.; Stucky, G. D.; Mathieu, M.; (88)Vansant, E. F. *J. Phys. Chem. B* **1998**, *102*, 585. (b) Van Der Voort, P.; Mathieu, M.; Morey, M.; Stucky, G. D.; Vansant, E. F. Stud. Surf. Sci. Catal. 1998, 117, 333.
- Van Der Voort, P.; Baltes, M.; Vansant, E. F. J. Phys. Chem. B (89)1999, 103, 10102.
- (90)Morey, M.; Davidson, A.; Eckert, H.; Stucky, G. D. Chem. Mater. **1996**, *8*, 486.
- (91)(a) Rao, R. R.; Weckhuysen, B. M.; Schoonheydt, R. A. Chem. Commun. 1999, 445. (b) Weckhuysen, B. M.; Rao, R. R.; Pelgrims, J.; Schoonheydt, R. A.; Bodart, P.; Debras, G.; Collart, O.; Van Der Voort, P.; Vansant, E. F. *Chem. Eur. J.* **2000**, *6*, 2960.
- (92) Morey, M. S.; Bryan, J. D.; Schwarz, S.; Stucky, G. D. *Chem. Mater.* **2000**, *12*, 3435.
 (93) Kowalchuk, C.; Corrigan, J. F.; Huang, Y. *Chem. Commun.* **2000**,
- 1811.
- (a) Bough, A. O.; Rice, G. L.; Scott, S. L. J. Am. Chem. Soc. 1999, (94)121, 7201. (b) Rice, G. L.; Scott, S. L. J. Mol. Catal. A 1997, 125. 73.
- (95) Anwander, R.; Roesky, R. J. Chem. Soc., Dalton Trans. 1997, 137.
- Yamamoto, K.; Tatsumi, T. Chem. Lett. 2000, 624. (96)
- (97) Anwander, R.; Palm, C.; Groeger, O.; Engelhardt, G. Organo-metallics 1998, 17, 2027.
- Eppinger, J. Ph.D. Thesis, Technische Universität München, (98) 1999.
- Sano, T.; Doi, K.; Hagimoto, H.; Wang, Z.; Uozumi, T.; Soga, K. (99) Chem. Commun. 1999, 733.

- (101) (a) Tudor, J.; O'Hare, D. Chem. Commun. 1997, 603. (b) O'Brien, S.; Tudor, J.; Maschmeyer, T.; O'Hare, D. Chem. Commun. 1997, 1905.
- (102) (a) Van Looveren, L. K.; Geysen, D. F. M. C.; Vercruysse, K. A. L.; Wouters, B. H. J.; Grobet, P. J.; Jacobs, P. A. Angew. Chem. L., woulders, D. H. J., Grober, P. J.; Jacobs, P. A. Angew. Chem.
 1998, 110, 540; Angew. Chem., Int. Ed. 1998, 37, 517. (b) Van
 Looveren, L. K.; Geysen, D. F. M. C.; Vercruysse, K. A. L.;
 Woulters, B. H. J.; Grobet, P. J.; Jacobs, P. A. Stud. Surf. Sci.
 Catal. 1998, 117, 477.
- (103) Srdanov, V. I.; Alxneit, I.; Stucky, G. D.; Reaves, C. M.; DenBaars, S. P. *J. Phys. Chem. B* **1998**, *102*, 3341.
 (104) Agger, J. R.; Anderson, M. W.; Pemble, M. E.; Terasaki, O.; Nozue, Y. *J. Phys. Chem. B* **1998**, *102*, 3345.
- (105)Oldroyd, R. D.; Thomas, J. M.; Sankar, G. Chem. Commun. 1997, 2025
- (106)(a) Maschmeyer, T.; Rey, F.; Sankar, G.; Thomas, J. M. Nature **1995**, *378*, 159. (b) Oldroyd, R. D.; Thomas, J. M.; Maschmeyer, T.; MacFaul, P. A.; Snelgrove, D. W.; Ingold, K. U.; Wayner, D. D. M. Angew. Chem. **1996**, *108*, 2966; Angew. Chem., Int. Ed. Engl. 1996, 35, 2787. (c) Chen, L. Y.; Chuah, G. K.; Jaenicke, S. Catal Lett. 1998, 50, 107. (d) Davies, L. J.; McCorn, P.; Bethell, D.; Page, P. C. B.; King, F.; Hancock, F. E.; Hutchings, G. J. J. Mol. Catal. A: Chem. **2001**, 165, 243.
- (107) Walker, J. V.; Morey, M.; Carlsson, H.; Davidson, A.; Stucky, G. D.; Butler, A. J. Am. Chem. Soc. 1997, 119, 6921.
 (108) Kang, K. K.; Ahn, W. S. J. Mol. Catal. A: Chem. 2000, 159, 403.
- Krijnen, S.; Abbenhuis, H. C. L.; Hanssen, R. W. J. M.; van Hooff, (109)
- J. H. C.; van Santen, R. A. Angew. Chem. 1998, 110, 374; Angew. Chem., Int. Ed. 1998, 37, 356.
 (110) Ferreira, P.; Goncalves, I. S.; Kühn, F. E.; Pillinger, M.; Rocha,
- J.; Santos, A. M.; Thursfield, A. *Eur. J. Inorg. Chem.* **2000**, 551. (111) Kageyama, K.; Tamazawa, J.; Aida, T. *Science* **1999**, *285*, 2113.
- (112) Rahiala, H.; Beurroies, I.; Eklund, T.; Hakala, K.; Gougeon, R.; Trens, P.; Rosenholm, J. B. J. Catal. 1999, 188, 14.
- (113) Lee, K.-S.; Oh, C.-G.; Yim, J.-H.; Ihm, S.-K. J. Mol. Catal. A: Chem. 2000, 159, 301.
- (114) Tudor, J.; Barlow, S.; Drewitt, M. J.; Heyes, S. J.; O'Hare, D. J. *Chem. Soc., Chem. Commun.* **1997**, 641. (115) MacLachlan, M. J.; Aaroca, P.; Coombs, N.; Manners, I.; Ozin,
- G. A. Adv. Mater. 1998, 10, 144.
- (116) Ferreira, P.; Goncalves, I. S.; Mosselmans, F.; Pillinger, M.; Rocha, J.; Thursfield, A. *Eur. J. Inorg. Chem.* **2000**, 97.
- Coman, S.; Florea, M.; Cocu, F.; Pârvulescu, V. I.; Jacobs, P. A.; (117)Danumah, C.; Kaliaguine, S. Chem. Commun. 1999, 2175.
- (a) Mehnert, C. P.; Ying, J. Y. Chem. Commun. 1997, 2215. (b) Mehnert, C. P.; Weaver, D. W.; Ying, J. Y. J. Am. Chem. Soc. (118)1998, 120, 12289.
- (119) Okumura, M.: Tsubota, S.: Iwamoto, M.: Haruta, M. Chem. Lett. 1998, 315.
- (120) Burch, R.; Cruise, N.; Gleeson, D.; Tsang, S. C. Chem. Commun. **1996**, 951.
- (122) (a) Suvano, S.; Fakkanen, T. A. S. Mar. Catal. A. Chem. 2007, 164, 273. (b) Suvanto, S.; Pakkanen, T. A.; Backman, L. Appl. Catal. A: General 1999, 177, 25. (c) Suvanto, S.; Hukkamäki, J.; Pakkanen, T. T.; Pakkanen, T. A. Langmuir 2000, 16, 4109.
 (123) Schweyer, F.; Braunstein, P.; Estournès, C.; Guille, J.; Kessler, S. C.; Suvanto, S.; Markanen, T. C., Chem. Commun. 2000, 1271.
- H.; Paillaud, J.-L.; Rosé, J. *Chem. Commun.* **2000**, 1271. (124) Zhou, W.; Thomas, J. M.; Shephard, D. S.; Johnson, B. F. G.;
- Ozkaya, D.; Maschmeyer, T.; Bell, R. G.; Ge, Q. Science 1998, *280*. 705.
- (125) Raja, R.; Sankar, G.; Hermans, S.; Shepard, D. S.; Bromley, S.; Thomas, J. M.; Johnson, B. F. G. *Chem. Commun.* **1999**, 1571.
 (126) Shepard, D. S.; Maschmeyer, T.; Sankar, G.; Thomas, J. M.;
- Ozkaya, D.; Johnson, B. F. G.; Raja, R.; Oldroyd, R. D.; Bell, R.
- G. Chem. Eur. J. 1998, 4, 1214.
 (127) Shepard, D. S.; Maschmeyer, T.; Johnson, B. F. G.; Thomas, J. M.; Sankar, G.; Ozkaya, D.; Zhou, W.; Oldroyd, R. D.; Bell, R. G. Angew. Chem. 1997, 109, 2337; Angew. Chem., Int. Ed. Engl. 1997, 36, 2242.
- (128) Köhler, K.; Engweiler, J.; Viebrock, H.; Baiker, A. Langmuir 1995, 11, 3423.
- (a) Zhou, X.; Ma, H.; Huang, X.; You, X. J. Chem. Soc., Chem. Commun. 1995, 2483. (b) Zhou, X.; Huang, Z.; Cai, R.; Zhang, (129)L.; Zhang, L.; Huang, X. Organometallics **1999**, *18*, 4128. (c) Kraut, S.; Magull, J.; Schaller, U.; Karl, M.; Harms, K.; Deh nicke, K. Z. Anorg. Allg. Chem. **1998**, 624, 1193. (130) Widenmeyer, M.; Grasser, S.; Köhler, K.; Anwander, R. *Mi*-
- croporous Mesoporous Mater. 2001, 44-45, 327.
- (131) Anwander, R.; Runte, O.; Eppinger, J.; Gerstberger, G.; Herdtweck, E.; Spiegler, M. J. Chem. Soc., Dalton Trans. 1998, 847.
- Gerstberger, G.; Anwander, R. *Microporous Mesoporous Mater.* 2001, 44–45, 303. (132)
- (133) Anwander, R.; Görlitzer, H.; Palm, C.; Runte, O.; Spiegler, M. J. Chem. Soc., Dalton Trans. 1999, 3611.

- (134) Nagl, I.; Widenmeyer, M.; Grasser, S.; Köhler, K.; Anwander, (134) Nagi, I.; Widenineyer, M., Grasser, S., Konter, K., Anwalacz, R. J. Am. Chem. Soc. 2000, 122, 1544.
 (135) Anwander, R. Top. Curr. Chem. 1996, 179, 33.
 (136) Harris, D. H.; Lappert, M. F. In Organometallic Chemistry
- Reviews: Organosilicon Reviews, Elsevier Scientific: Amster-(137) Bradley, D. C.; Chisholm, M. H. Acc. Chem. Res. 1976, 9, 273.
 (138) Lappert, M. F.; Power, P. P.; Sanger, A. R.; Srivastava, R. C. Metal And Metalloid Amides; Ellis Horwood: Chichester, 1980.

- (139) Brunel, D. Microporous Mesoporous Mater. 1999, 27, 329.
 (140) (a) Yamamoto, T.; Shido, T.; Inagaki, S.; Fukushima, Y.; Ichikawa, M. J. Am. Chem. Soc. 1996, 118, 5810. (b) Yamamoto, T.; Shido, T.; Inagaki, S.; Fukushima, Y.; Ichikawa, M. J. Phys. Chem. B 1099, 129, 2002. *Chem. B* **1998**, *102*, 3866. (141) Adachi, M.; Corker, J.; Kessler, H.; Lefebvre, F.; Basset, J.-M.
- Microporous Mesoporous Mater. **1998**, *21*, 81. (142) de Graauw, C. F.; Peters, J. A.; van Bekkum, H.; Huskens, J.
- Synthesis 1994, 10, 1007
- (143)(a) Horner, L.; Kaps, U. B. Liebigs Ann. Chem. 1980, 192. (b) Shiner, V. J., Jr.; Whittaker, D. J. Am. Chem. Soc. 1969, 91, 394.
- (144) Kagan, H. B.; Namy, J.-L. *Top. Organomet. Chem.* 1999, *2*, 155.
 (145) Hou, Z.; Fujita, A.; Zhang, Y.; Miyano, T.; Yamazaki, H.; Wakatsuki, Y. *J. Am. Chem. Soc.* 1998, *120*, 754, and references therein.
- (146) Sinclair, P. E.; Sankar, G.; Catlow, C. R. A.; Thomas, M. T.; Maschmeyer, T. J. Phys. Chem. B 1997, 101, 4232
- (147) Cornils, B., Herrmann, W. A., Eds. Applied Homogeneous Catalysis by Organometallic Complexes; VCH Verlagsgesellschaft mbH: Weinheim, 1996.
- Tajima, K.; Aida T. Chem. Commun. 2000, 2399. (148)
- (149) Ozin, G. A.; Kuperman, A.; Stein, A. Angew. Chem. 1989, 101, 373; Angew. Chem., Int. Ed. Engl. 1989, 29, 359. (b) Ozin, G. A.; Özkar, S. Adv. Mater. 1992, 4, 11. (c) Ozin, G. A. Adv. Mater. **1994**, *6*, 71
- (150) For examples, see: (a) Klein, S.; Maier, W. F. Angew. Chem. 1996, 108, 2376; Angew. Chem., Int. Ed. Engl. 1996, 35, 2230. (b) Kochkar, H.; Figueras, F. J. Catal. 1997, 171, 420. (c) Clark, J. H.; Macquarrie, D. J. Chem. Commun. 1998, 853. (d) Müller, C. A.; Maciejewski, M.; Mallat, T.; Baiker, A. J. Catal. 1999, 184, 280. (e) Price, P. M.; Clark, J. H.; Macquarrie, D. J. J. Chem. Soc., Dalton Trans. 2000, 101.
- (151) Choplin, A. J. Mol. Catal. 1994, 86, 501.
- (151) Chopmi, A. J. Mol. Catal. 1994, 86, 501.
 (152) For an example, see: Oldroyd, R. D.; Sankar, G.; Thomas, J. M.; Özkaya, D. J. Phys. Chem. B 1998, 102, 1849.
 (153) Hertl, W.; Hair, M. L. J. Phys. Chem. 1971, 75, 2181.
 (154) Sindorf, D. W.; Maciel, G. E. J. Phys. Chem. 1982, 86, 5208.
 (155) Haukka, S.; Root, A. J. Phys. Chem. 1994, 98, 1695.
 (156) Vanadicawa, T.; Shimira, T.; Kurada, K.; Kett, G. B.; M. Cl.

- Yanagisawa, T.; Shimizu, T.; Kuroda, K.; Kato, C. Bull. Chem. Soc. Jpn. 1990, 63, 1535. (156)
- Soc. Jpn. 1990, 63, 1535.
 (157) Chen, J.; Li, Q.; Xu, R.; Xiao, F. Angew. Chem. 1995, 107, 2898; Angew. Chem., Int. Ed. Engl. 1995, 34, 2694.
 (158) (a) Zhao, X. S.; Lu, G. Q.; Whittaker, A. K.; Millar, G. J.; Zhu, H. Y. J. Phys. Chem. 1997, 101, 6525. (b) Zhao, X. S.; Lu, G. Q. J. Phys. Chem. 1998, 102, 1556.
 (159) (a) Koyano, K. A.; Tatsumi, T.; Tanaka, Y.; Nakata, S. J. Phys. Chem. B 1997, 101, 9436. (b) Tatsumi, T.; Koyano, K. A.; Tanaka, Y.; Nakata, S. Stud. Surf. Sci. Catal. 1998, 117, 143.
 (160) (a) Jaroniec, C. P.; Kruk, M.; Jaroniec, M.; Sayari, A. J. Phys. Chem. B 1998, 102, 5503. (b) Jaroniec, M.; Kruk, M.; Sayari, A. Stud. Surf. Sci. Catal. 1998, 117, 325. (c) Kruk, M.; Sayari, A.
- Stud. Surf. Sci. Catal. 1998, 117, 325. (c) Kruk, M.; Antochshuk,
 V.; Jaroniec, M.; Sayari, A. J. Phys. Chem. B 1999, 103, 10670.
 (161) Hansen, E. W.; Courivaud, F.; Karlsson, A.; Kolboe, S.; Stöcker,
- M. Microporous Mesoporous Mater. 1998, 22, 309.
- (162) Antochshuk, V.; Jaroniec, M. J. Phys. Chem. B 1999, 103, 6252.
- (a) Antochshuk, V.; Jaroniec, M. *Chem. Commun.* **1999**, 2373.
 (b) Antochshuk, V.; Jaroniec, M. *Chem. Mater.* **2000**, *12*, 2496. (163)(c) Pin, H.-P.; Yang, L.-Y.; Mou, C.-Y.; Liu, S.-B.; Lee, H.-K. New J. Chem. 2000, 24, 253.
- (164) Lim, M. H.; Stein, A. Chem. Mater. 1999, 11, 3285.
- (165) Shephard, D. S.; Zhou, W.; Maschmeyer, T.; Matters, J. M.; Roper, C. L.; Parson, S.; Johnson, B. F. G.; Duer, M. J. Angew. Chem. 1998, 110, 2847; Angew. Chem., Int. Ed. 1998, 37, 2719.
 (166) Bleloch, A.; Johnson, B. F. G.; Ley, S. V.; Price, A. J.; Shephard,
- D. S.; Thomas, J. M. *Chem. Commun.* **1999**, 1907. Johnson, B. F. G.; Raynor, S. A.; Shephard, D. S.; Maschmeyer,
- (167)T.; Thomas, J. M.; Sankar, G.; Bromley, S.; Oldroyd, R.; Gladden, L.; Mantle, M. D. Chem. Commun. 1999, 1167
- (168) Park, M.; Komarneni, S. Microporous Mesoporous Mater. 1998, 25, 75.
- (169) Zhao, X. S.; Lu, G. Q.; Hu, X. Chem. Commun. 1999, 1391.
- Raimondo, M.; Perez, G.; Sinibaldi, M.; De Stefanis, A.; Tom-(170)Inson, A. A. G. *Chem. Commun.* **1997**, 1343.
 (171) Thoelen, C.; Van de Walle, K.; Vankelecom, I. F. J.; Jacobs, P.
- A. Chem. Commun. 1999, 1841.
- (172)Inumara, K.; Kiyoto, J.; Yamanaka, S. Chem. Commun. 2000, 903.
- (a) Feng, X.; Fryxell, G. E.; Wang, L.-Q.; Kim, A. Y.; Liu, J.; (173)Kemner, K. M. *Science* **1997**, *276*, 923. (b) Liu, J.; Feng, X.;

Fryxell, G. E.; Wang, L.-Q.; Kim, A. Y.; Gong, M. Adv. Mater. **1998**. *10*. 161.

- (174) Mercier, L.; Pinnavaia, T. J. Adv. Mater. 1997, 9, 500.
- Fryxell, G. E.; Liu, J.; Hauser, T. A.; Nie, Z.; Ferris, K. F.; Mattigold, S.; Gong, M.; Hallen, R. T. *Chem. Mater.* **1999**, *11*, (175)2148
- (176) Derrien, A.; Renard, G.; Brunel, D. Stud. Surf. Sci. Catal. 1998, 117, 445.
- (177) Subba Rao, Y. V.; De Vos, D. E.; Jacobs, P. A. Angew. Chem. 1997, 109, 2776; Angew. Chem., Int. Ed. Engl. 1997, 36, 2661.
 (178) (a) Van Rhijn, W. M.; De Vos, D. E.; Sels, B. F.; Bossaert, W. D.;
- Jacobs, P. A. Chem. Commun. 1998, 317. (b) Van Rhijn, W. M.; De Vos, D. E.; Bossaert, W. D.; Bullen, J.; Wouters, B.; Grobet, P.; Jacobs, P. A. *Stud. Surf. Sci. Catal.* **1998**, *117*, 183. (179) Rodriguez, I.; Iborra, S.; Corma, A.; Rey, F.; Jordá, J. L. *Chem.*
- Commun. 1999, 593.
- (180) (a) Lapéras, M.; Bellocq, N.; Brunel, D.; Moreau, P. Tetrahe-dron: Asymmetry 1998, 9, 3053. (b) Bellocq, N.; Abramson, S.; Laspéras, M.; Brunel, D.; Moreau, P. Tetrahedron: Asymmetry 1999, 10, 3229. (c) Abramson, S.; Laspéras, M.; Galarneau, A.; Desplantier-Giscard, D.; Brunel, D. Chem. Commun. 2000, 1773.
- (181) Zhou, X.-G.; Yu, X.-Q.; Huang, J.-S.; Li, S.-G.; Li, L.-S.; Che, C.-M. Chem. Commun. **1999**, 1789.
- (182) Rao, Y. V. S.; De Vos, D. E.; Bein, T.; Jacobs, P. A. Chem. Commun. 1997, 355.
- (183)Sutra, P.; Brunel, D. Chem. Commun. 1996, 2485.
- Sutra, P.; Brunel, D.; Fajula, F. Stud. Surf. Sci. Catal. 2000, (184)129, 325.
- (185)Choudary, B. M.; Kantam, M. L.; Bharati, B.; Sreekanth, P.; Figueras, F. J. Mol. Catal. A **2000**, 159, 417. (186) Shyu, S.-G.; Cheng, S.-W.; Tzou, D.-L. Chem. Commun. **1999**,
- 2337.
- (a) Liu, C.-J.; Li, S.-G.; Pang, W.-Q.; Che, C.-M. *Chem. Commun.* **1997**, 65. (b) Liu, C.-J.; Yu, W.-Y.; Li, S.-G.; Che, C.-M. *J. Org.* (187)Chem. 1998, 63, 7364.
- (188) Díaz, J. F.; Balkus, K. J., Jr.; Bedioui, F.; Kurshev, V.; Kevan, L. Chem. Mater. 1997, 9, 61.
- (189) Kantam, M. L.; Bandyopadhyay, T.; Rahman, A.; Reddy, N. M.; Choudary, B. M. J. Mol. Catal. A **1998**, 133, 293.
- (190) Raynor, S. A.; Thomas, J. M.; Raja, R.; Johnson, B. F. G.; Bell, R. G.; Mantle, M. D. *Chem. Commun.* **2000**, 1925. (191) Dai, S.; Burleigh, M. C.; Shin, Y.; Morrow, C. C.; Barnes, C. E.;
- Xue, Z. Angew. Chem. 1999, 111, 1314; Angew. Chem., Int. Ed. 1999, 38, 1235.
- Anwander, R.; Nagl, I.; Widenmeyer, M.; Engelhardt, G.; Groeger, O.; Palm, C.; Röser, T. J. Phys. Chem. B 2000, 104, (192)3532
- (193) D'Amore, M. B.; Schwarz, S. *Chem. Commun.* 1999, 121.
 (194) (a) Khushalani, D.; Ozin, G. A.; Kuperman, A. *J. Mater. Chem.* 1999, *9*, 1483. (b) Khushalani, D.; Ozin, G. A.; Kuperman, A. *J.* Mater. Chem. 1999, 9, 1491.
- (195) (a) Corriu, R.; Leclercq, D. Angew. Chem. 1996, 108, 1524; Angew. Chem., Int. Ed. Engl. 1996, 35, 1420. (b) Cerveau, G.; Corriu, R. Coord. Chem. Rev. 1998, 80, 1051. (c) Boury, B.; Corriu, R. Adv. Mater. 2000, 12, 989.
 (196) Burkett, S. L.; Sims, S. D.; Mann, S. Chem. Commun. 1996, 1367.
- (197) Macquarrie, D. J. Chem. Commun. 1996, 1961.
- (198) Fowler, C. E.; Burkett, S. L.; Mann, S. Chem. Commun. 1997, 1769
- (199) Hall, S. R.; Fowler, C. E.; Lebeau, B.; Mann, S. Chem. Commun. 1999, 201
- (200)Igarashi, N.; Tanaka, Y.; Nakata, S.; Tatsumi, T. Chem. Lett. **1999**, 1,
- (201) Babonneau, F.; Leite, L.; Fontlupt, S. J. Mater. Chem. 1999, 9, 175.
- (202) Macquarrie, D. J.; Jackson, D. B. Chem. Commun. 1997, 1781.
- (203) Brown, J.; Mercier, L.; Pinnavaia, T. J. Chem. Commun. 1999, (204) Lim, M. H.; Blanford, C. F.; Stein, A. J. Am. Chem. Soc. 1997,
- 119, 4090. (205) Lim, M. H.; Blanford, C. F.; Stein, A. Chem. Mater. 1998, 10,
- (206) Richter, R.; Mercier, L. Chem. Commun. 1998, 1775.
- Lebeau, B.; Fowler, C. E.; Hall, S. R.; Mann, S. J. Mater. Chem. (207)1999, 9, 2279.
- (a) Fan, H.; Lu, Y.; Stump, A.; Reed, S. T.; Baer, T.; Schunk, R.; (208)Perez-Luna, V.; López, G. P.; Brinker, C. J. Nature 2000, 405, 56. (b) Lu, Y.; Fan, H.; Doke, N.; Loy, D. A.; Assink, R. A.; LaVan, D. A.; Brinker, C. J. J. Am. Chem. Soc. 2000, 122, 5258.
- (209) For example, see: Leyrit, P.; McGill, C.; Quignard, F.; Choplin, A. J. Mol. Catal. A 1996, 112, 395.
- (210) Anwander, R. *Top. Curr. Chem.* **1996**, *179*, 149. (211) Widenmeyer, M. Ph.D. Thesis, Technische Universität München, (211) 2001
- (212) (a) Tatsumi, T.; Koyano, K. A.; Igarashi, N. Chem. Commun. **1998**, 325. (b) Corma, A.; Domine, M.; Gaona, J. A.; Jordá, J. L.; Navarro, M. T.; Rey, F.; Pérez-Pariente, J.; Tsuji, J.; McCulloch, B.; Nemeth, L. T. Chem. Commun. 1998, 2211. (c) Bhaumik, A.; Tatsumi, T. J. Catal. 2000, 189, 31. (d) Bhaumik, A.;

Tatsumi, T. Catal. Lett. 2000, 66, 181. (e) Corma, A.; Jordá, J. L.; Navarro, M. T.; Pérez-Pariente, J.; Rey, F.; Tsuji, J. Stud. Surf. Sci. Catal. 2000, 129, 169.

- (214) Huo, Q.; Zhao, D.; Feng, J.; Weston, K.; Buratto, S. K.; Stucky, G. D.; Schacht, S.; Schüth, F. Adv. Mater. 1997, 9, 974.
- (215) Tajima, K.; Ogawa, G.; Aida, T. J. Polym. Sci. A: Polym. Chem. 2000, 38, 4821.
- (216) For a review on ordered mesostructured materials with optical functionality, see: Wirnsberger, G.; Stucky, G. D. CHEMPHYS-CHEM 2000, 1, 89.
- (217) Hu, J.; Odom, T. W.; Lieber, C. M. Acc. Chem. Res. 1999, 32, 435
- (218) Winkler, H.; Birkner, A.; Hagen, V.; Wolf, I.; Schmechel, R.; von Seggern, H.; Fischer, R. A. *Adv. Mater.* **1999**, *11*, 1444.
- (219) Dag, Ö.; Ozin, G. A.; Yang, H.; Reber, C.; Bussière, G. Adv. Mater. 1999, 11, 474.
- Leson, R.; Margolese, D.; Stucky, G. D.; Petroff, P, M. Phys. Rev. (220)B 1995, 52, R2285.
- (a) Abe, T.; Tachibana, Y.; Uematsu, T.; Iwamoto, M. J. *Chem. Soc., Chem. Commun.* **1995**, 1617. (b) Fröba, M.; Köhn, R.; (221)Bouffaud, G.; Richard, O.; van Tendeloo, G. Chem. Mater. 1999, 11, 2858
- (222) Sasaki, M.; Osada, M.; Sugimoto, N.; Inagaki, S.; Fukushima, Y.; Fukuoka, A.; Ichikawa, M. Microporous Mesoporous Mater. 1998, 21, 597
- (223)Zhang, W.-H.; Shi, J.-L.; Wang, L.-Z.; Yan, D.-S. Chem. Mater. **2000**, *12*, 1408.
- (224) Hirai, T.; Okubo, H.; Komasawa, I. J. Phys. Chem. B 1999, 103, 4228
- (a) Wang, L.-Z.; Shi, J.-L.; Zhang, W.-H.; Ruan, M.-L.; Yu, J.; Yan, D.-S. *Chem. Mater.* **1999**, *11*, 3015. (b) Huang, M. H.; Choudrey, A.; Yang, P. *Chem. Commun.* **2000**, 1063. Wu, C.-G.; Bein, T. *Science* **1994**, *266*, 1013. (225)
- (226)
- (227) Wu, C.-G.; Bein, T. Science 1994, 266, 1757.
- (228) Stringfellow, G. B. Organometallic Vapour-Phase Epitaxy: Theory and Practice; Academic Press: San Diego, 1989.
- (229) Hench, L. L.; West, J. K. Chem. Rev. 1990, 90, 33.
- (230) Foucher, D. A.; Tang, B.-Z.; Manners, I. J. Am. Chem. Soc. 1992, 114, 6246.
- (231) Corrigan, J. F.; Fenske, D. Angew. Chem. 1997, 109, 2070; Angew. Chem., Int. Ed. Engl. 1997, 36, 1981.
 (232) Coleman, N. R. B.; Morris, M. A.; Spalding, T. R.; Holmes, J. D.
- (132) Coleman, N. R. B., Morris, M. A., Sprannig, T. E., Homes, C. Z. J. Am. Chem. Soc. 2001, 123, 187.
 (233) (a) Antonelli, D. M.; Ying, J. Y. Angew. Chem. 1996, 108, 461; Angew. Chem., Int. Ed. Engl. 1996, 35, 426. (b) Antonelli, D. M.; Nakahira, A.; Ying, J. Y. Inorg. Chem. 1996, 35, 3126.
- (234) (a) Murray, S.; Trudeau, M.; Antonelli, D. M. Adv. Mater. 2000, 12, 1339. (b) Murray, S.; Trudeau, M.; Antonelli, D. M. Inorg. Chem. 2000, 39, 5901.
- (235) He, X.; Trudeau, M.; Antonelli, D. M. Adv. Mater. 2000, 12, 1036.
- (236) Ye, B.; Trudeau, M.; Antonelli, D. M. Adv. Mater. 2001, 13, 29.
- (237) Vettraino, M.; Trudeau, M.; Antonelli, D. M. Adv. Mater. 2000, 12 337
- (a) Feher, F. J.; Budzichowski, T. A. Polyhedron 1995, 14, 3239. (238)(b) Abbenhuis, H. C. L. Chem. Eur. J. 2000, 6, 25, and references therein.
- (239) (a) Floriani, C. Chem. Eur. J. 1999, 5, 19, and references therein.
- Mizuno, N.; Nomiya, K.; Finke, R. G. Inorg. Chem. 1995, 34, 1413.
- (241) For examples, see: (a) Neeraj, N. U.; Raju, B. V. N.; Rao, C. N. R. Chem. Commun. 1996, 2243. (b) Jones, D. J.; Jiménez-Jiménez, J.; Jiménez-López, A.; Maireles-Torres, P.; Olivera-Pastor, P.; Rodriguez-Castellón, E.; Rozière, J. Chem. Commun. 1997, 431.
- (242) For examples, see: (a) Antonelli, D. M.; Ying, J. Y. Angew. Chem. **1995**, 107, 2202; Angew. Chem., Int. Ed. Engl. **1995**, 34, 2014. (b) Ciesla, U.; Schacht, S.; Stucky, G. D.; Unger, K. K.; Schüth, F. Angew. Chem. **1996**, 108, 597; Angew. Chem., Int. Ed. Engl. 1996, 35, 541. (c) Bagshaw, S. A.; Pinnavaia, T. J. Angew. Chem. 1996, 108, 1180; Angew. Chem., Int. Ed. Engl. 1996, 35, 1102.
- (243) Fröba, M.; Muth, O. Adv. Mater. 1999, 11, 564.
 (244) Raimondi, M. E.; Marchese, L.; Gianotti, E.; Maschmeyer, T.; Seddon, J. M.; Coluccia, S. Chem. Commun. 1999, 87.
- (245) Honma, I.; Zhou, H. S. Chem. Mater. 1998, 10, 103.
- (246) MacLachlan, Asefa, T.; M. J.; Ozin, G. A. Chem. Eur. J. 2000, 6, 2507.

CM0111534